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Computational 
approaches to motor 
control 

Daniel M. Wolpert 

this review wiIl focus bn four areas of motor control which have recently ken enriched 
both by neural network and control system models: motor planning, motor prediction, 
state estimation and motor learning. We will review the computational foundations of 
each of these concepts and present specific models which have been tested by 

psychophysical experiments. We will cover the topics of optimal control for motor 

planning, forward models for motor prediction, observer models of state estimation 
and modular decomposition in motor learning. The aim of this review is to demonstrate 

how computational approaches, as well as proposing specific models, provide a 
theoretical framework to formalize the issues in motor control. 

T his review will focus on several basic theoretical issues motor commands emanating from the controller within the 

in motor control as well as supporting experimental studies. central nervous system (see Fig. 1). In order to dctcrmine 
While many of the concepts discussed are applicable to all the behaviour of the arm in response to this input an ad- 

areas of motor control, including eye movements, speech ditional set of variables, called state variables, must also be 
production and posture, we will focus on arm movements known. For example, in a robotic model of the arm the 
as an illustrative system. From an engineering perspective motor command signals the torques generated around the 

the arm can be considered as a system whose inputs are the joints and the state variables could be the joint angles and 
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Fig. 1 Motor control. The motor system is shown schematically along with the four themes of motor control that will be reviewed 
(see text for details). The motor system (cent4 has inputs, motor commands, which causes it to change its state and produce an output, 
sensory feedback. For clarity not all lines are shown. 

angular velocities. Taken together, the inputs and the state 
variables are sufficient to determine the future behaviour of 
the systemThe controller does not usually have direct ac- 
cess to the state of the system but has access to some func- 
tion of the state, such as sensory feedback, which forms the 
output of the system. 

This review will consider four issues which arise in 
motor control and each is represented schematically in Fig. 1. 
The first is motor planning, which I consider to be the com- 
putational process by which the desired states or outputs of 
the system are specified given an extrinsic task goal. Second, 
I will explore the notion of motor prediction, and the use of 
forward models which predict the behaviour of the arm 
given its input. Third, I will consider state estimation, which 
is a sensorimotor integration process by which the hidden 
state of the motor system can be estimated by monitoring 
both its inputs and outputs. I will show how motor predic- 
tion can play a fundamental role in such state estimation. 
Lastly, I will consider motor learning, focusing on modular- 
ity of learning. 

Motor planning 
The computational problem of motor planning arises from 
a fundamental property of the motor system -,the reduction 
in the degrees of freedom that occurs during the transition 
from neural commands through muscle activation to move- 
ment kinematics’ (Fig. 2). Even for the simplest of tasks, 
such as moving the hand to a target location, there are an 

Trends in Cognitive Sciences - Vol. 1, No. 6, Septem ber 1997 

infinite number of possible paths that the hand could move 
along and for each of these paths there is an infinite number 
of velocity profiles (trajectories) that the hand could follow. 
Having specified the hand path and velocity, each location 
of the hand along the path could be achieved by multiple 
combinations of joint angles. Moreover, due to the over- 
lappmg actions of muscles and the ability to co-contract, 
each arm configuration could be achieved by many differenr 
muscle activations. Motor planning can therefore be con- 
sidered as the computational process of selecting a single 
solution or pattern of behaviour at all levels within this 
motor hierarchy (Fig. 2) from the many alternatives that 
may be consistent with the goal of the task. 

One computational framework that is natural for such 
a selection process is optimal control, in which a cost func- 
tion is chosen in order to evaluate quantitatively the perfor- 
mance of the system under control’. The cost function is 
usually defined as the integral of an instantaneous cost, over 
a certain time interval, and the aim is to minimize the value 
of this cost function. Every possible solution, that is every 
possible movement, has an associated cost and the solution 
with the lowest cost is selected as the plan. Within this 

framework the cost function is a mathematical means for 
specifying the plan. The variables that appear in the cost 
function, and that are therefore planned, determine the pat- 
tern of behaviour that is observed. 

While many possible cost functions have been exam- 
ined there are two main classes of model that have been 
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Fig. 2 The compulation problem of motor planning. The 
levels in the motor hierarchy are shown with the triangles be- 
tween the levels indicating the reduction in the degrees of free- 
dom between the higher and lower levels. Specifying a pattern 
of behaviour at any level completely specifies the patterns at 
the level below (many to one: many patterns at the higher level 
correspond to one pattern at the lower) but is consistent with 
many patterns at the level above (one to many). Planning can 
be considered as the process by which particular patterns, con- 
sistent with the extrinsic task goals, are selected at each level. 

proposed for point-to-point movements - kinematic and 
dynamic based models. The cost function in kinematic 
based models contains only the geometrical and time-based 
properties of the motion, and the variables of interest are 
the positions (e.g. joint angles or hand Cartesian coordinates) 
and their corresponding velocities, accelerations and higher 
derivatives. Based on the observation that point-to-point 
movements of the hand are smooth when viewed in a 

Cartesian framework, it was proposed that the squared first 
derivative of Cartesian hand acceleration or ‘jerk’ is mini- 
mized over the movemenF, This minimum jerk hypoth- 
esis produces a unique solution, given the movement du- 
ration and suitable boundary conditions of the initial and 
final position and velocity, and can be formulated into an 
on-line feedback rule’. The model predicts straight-line 
Cartesian hand paths with bell-shaped velocity profiles that 
are consistent with the empirical data for rapid movements 
made without accuracy constraints’,‘-“. 

The cost function in dynamic based models depends on 
the dynamics of the arm, and the variables of interest in- 
clude joint torques, forces acting on the hand and the mus- 
cle commands. Several models have been proposed in which 
the cost function depends on dynamic variables such as 

torque change, muscle tension or motor command”‘,“. One 
critical difference between the kinematic and dynamic based 
models is the degree to which planning and execution pro- 
cesses can be separated. The specifications of the movement in 
kinematic models, such as minimum jerk, are the positions 
and velocities of the arm as a function of time. Therefore, a 
separate process is required to achieve these specifications 
and this model is a hierarchical, serial plan and execute 
model. In contrast, the solutions to dynamic models, such 
as minimum torque change, are the motor commands 
required to achieve the movement and therefore planning 
and execution are not conceived as separate processes. 

Although examination of natural movements has not 
resolved the debate between kinematic and dynamic based 
cost functions, the predictions of the two classes of models 
are different under visual and force field perturbations. 
Thus, if the visual feedback of the hand path is altered, the 
cost in kinematic based models, which depend on the per- 
ceived movement of the limb, increases. However, provided 
the visuomotor perturbation is chosen so as to decay to zero 
at both the start and end of the movement”, the target can 
still be reached by using the same series of motor commands 
such that dynamic based cost, which depends on these moror 
commands is, not increased. Kinematic based models, 
therefore predict that under these conditions the actual hand 
path will change so as to bring the perceived path back to 
the original path, which has the lowest cost. In contrast, dy- 
namic models predict no such adaptation. However, in the 
presence of a force field which alters the dynamics of the arm, 
kinematic based models predict that the normal kinematics 
of movement will be regained to, once again, minimize the 
cost. Moreover, under these conditions, dynamic based 
models predict a new solution (and therefore a new hand 
path) to the optimization process, rhat takes account of the 
new motor commands required to make the movement in 
the force field. Evidence from both perturbed visual feed- 
back studies’z-‘4 and from force field studies’5J6 support a 
kinematic based sequential plan and execute strategy. 

However, studies of more complex movements around 
an obstacle suggest that knowledge of the dynamics of the 
arm is used in planning. Indeed, subjects tend to select their 
movement paths so as to ensure that their closest point of 
approach to an obstacle is on an axis where the arm is most 
inertially stable”. Similarly, external movement constraints 
may affect kinematics, since there are differences between the 
hand paths used when the hand is free to move compared to 
a constrained condition in which it is required to move 
along the surface of a table. The paths for unconstrained 
movement are more curved that those made along the table- 
top18. This suggests that the nature of the interaction with 
the environment can have a significant effect on movement 
kinematics. Whether these findings can be incorporated 
into an optimal control framework is still an open question. 

The minimum jerk model has recently been used in 
an attempt to find a unified framework within which to 
understand two properties of trajectory formation, local 
isochrony and the two-thirds power law. Whereas global 
isochrony applies to the observation that the average veloc- 
ity of movement increases with the movement distance 
thereby maintaining a constant movement durarion, local 

Trends or’ Cognitive Sciences - Vol. 1, No. 6, September 1997 



Wolpert - Computation and motor control 

A 
1.0 

T  
9 
2 0.5 .- m 

0.0 

C 
1.0 

E 
l$ 0.5 

.- m 

: 
OS 

I 

p 
I 1 .o 2.0 

1 .o 2.0 

Time (s) 

D 
2.5 

- “E 2.0 

= 1.5 

8 
c .m 1.0 

z > 0.5 

0.0 

0.0 1.0 2.0 

Time (s) 
Fig. 3 Sensorimotor integration. The propagation of the bias (A) and variance (B) of the state estimate against 
movement duration is shown asa spline fit with outer standard error lines to the data from eight subjectP. Also shown 
are the bias (C) and variances (D) from a simulation of the K&man filter (see Box 1 for details). Modified from Ref. 31. 

isochrony refers to the subunits of movement. For example, 
if subjects are required to trace out a figure eight in which 
the two loops are of unequal size, the time to traverse each 
loop is approximately equal. By approximating the solution 
of the minimum jerk when the path is constrained (only the 
velocity along the path could be varied) local isochrony be- 
comes an emergent property of the optimization of jerk”. 
The two-thirds power law, A 0~ 0 (p=X), is based on the 
observation of the relationship between path curvature (C) 
and hand angular velocity (A) during drawing or scribbling? 
(for a more general formulation of the law see Ref. 21). It 
has been shown that the solution of the minimum jerk 
along a constrained path approximates the solution given by 
the two-thirds power law’“. One area of debate is the extent 
to which the two-thirds power law is a manifestation of a 
plan rather than a control constraint. Based on a simple 
model of control it has been shown that the two-thirds 
power law could be an emergent property of the muscles’ 
visco-elastic properties*‘. However, one feature which has 
not yet been explained by such emergent property models 
is the fact that the exponent of the power law, p, changes 
systematically through development, from a value of 0.77 at 
age 6 to an adult value of 0.66 (Xx) at around 12 year?‘. 

The possibility that we predict the consequences of our own 
action using an internal model of the motor system has 
emerged as an important theoretical concept in motor con- 
troP. Such models have become known as forward models 
as they capture the forward or causal relationship between 
inputs to the system, such as the arm, and the outputs. 
Forward dynamic models, for example, predict the next state 
(for example, the position and velocity) given the current 

Forward models have several possible 
uses. Forward models are key components 
in systems that use a copy of the motor 
command, an efference copy, to anticipate 
and cancel the sensory effects of a given 
movement. This reafference process has 
been extensively investigated in eye move- 
ment control (see Ref. 24 for a review). 
By using such a system for the control of 
arm movements it is possible to cancel 
out the effects of self-motion on sen- 
sation and thereby distinguish between 
those sensory events that are due to self- 
produced motion and those caused by the 
environment, such as contact with ob- 
jects. Another use of a forward model is 

to maintain srability in the presence of feedback delays. In 
most sensorimotor loops the feedback delays are large, and 
can result in instability when trying to make rapid move- 
ments under feedback control. Two strategies can maintain 
stability during movement with such delays: intermittency 
and prediction. Intermittency, in which movement is inter- 
spersed with rest, is seen in manual tracking and saccadic eye 
movement. The intermittency of movement allows time for 
veridical sensory feedback to be obtained (a strategy often 
used in adjusting the temperature of a shower where the time 
delays are large). Such intermittency can arise either from a 
psychological refractory period after each movemen+ or an 
error deadzone” in which the perceived error must exceed a 
threshold before a new movement is initiated. Alternatively, 
in predictive control, a forward model is used to provide in- 
ternal feedback of the predicted outcome of an action which 
can be used before sensory feedback is available, thereby 
preventing instability2’. Forward models can also be of 
computational use in motor learning. A forward model 
which captures the relationship between motor commands 

and outcome can be used to convert errors in outcome into 
errors in motor commands, thereby providing a suitable 
signal for learning - a process known as distal supervised 
learningZ8. Similarly, by predicting the sensory outcome of 
an action, without actually performing it, a forward model 
can be used in mental practice to learn to select between 
possible actions. Finally, a forward model forms an integral 
component in systems which integrate sensory and motor 
information in state estimation. 

Motor prediction 

state and the motor command whereas 
forward output models predict the sen- 
sory feedback given this estimated state 
(Fig. 1). This is in contrast to inverse 
models which invert the system by pro- 
viding the motor command which will 
cause a desired change in state. As inverse 
models produce the motor command re- 
quired to achieve some desired result 
they have a natural use as a controller (see 
Motor Learning). 

State estimation 
Although the state of a system is not directly available to the 
controller, it is possible to estimate the state indirectly. Such a 
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Box 1. The Kalman filter model of sensorimotor integration 

The Kalman filter model of the sensori- 
motor integration process is based on a 

formal engineering model from the optimal 

state estimation field”. The Kalman filter is 
a linear dynamical system that produces an 

estimate of the location of the hand by using 
both the motor outflow and sensory feed- 

back in conjunction with a model of the 
motor system, thereby reducing the overall 

Feedforward path 

uncertainty in its estimateb. This model a.- 
sumes that the localization errors arise from 

two sources of uncertainty, the first from the 
variability in the response of the arm ro the 

motor command and the second in the sen- 
sory feedback given the arm’s conf@ration. 

The Kalman filter model can be considered 
as the combination of two processes which 

together contribute to the state estimate. The 
first, feedforward process (upper part) uses the efferent outflow along with the 

current state estimate to predict the next state by simulating the movement 
dynamics with a forward model. The second, feedback process (lower part) 

compares the sensory inflow with a prediction of the sensory inflow based on 
the current state. The sensq error, the difference between actual and pre- 

dicted sensory feedback, is used to correct the state estimate resulting from the 

forward model. The relative contributions of the internal simulation and sen- 
sory correction processes to the final estimate are modulated by the time vary- 
ing Kaiman gain so as to provide optimal state estimates. 

To simulate the experimental data of the sensorimotor integration task (see 
main text: State Estimation) we mod&d the hand as a damped point mass, 

that was acted on by a force whose temporal profile was chosen to replicate 

the kinematics of movement’. At the start of the movement the subject was 
given full view of his arm and the initial state estimate of the hand position was 
set to its veridical value. The Kalman filter with an accurate forward model of 

the system would be expected to show no bias. To accommodate the obser- 

vation that the subjects generally tended to overestimate the distance that their 
arm had moved, we set the gain that couples force to estimated acceleration 

within the forward model to a value that was larger than its veridical value. 
The Kalman filter model demonstrated the two distinct phases of bias 

propagation observed (Fig. 3C). By overestimating the force acting on the arm 
the forward model overestimates the distance travelled, an integrative process 

t 
State 

correction 

eventually balanced by the sensory correction. The accuracy of the prediction 
from the forward model component of the Kalman filter depends on the ac- 

curacy of the current state estimate (one of its inputs). Therefore during the 

early part of the movement, when the current state estimate is accurate, the 
sensorimotor integration process weights heavily the contribution of the for- 

ward model to the final estimate. However, in the later stages of the move- 
ment, when the current state estimate is less accurate, the sensory feedback 

must be relied upon to correct for inaccuracies in the forward model. In the 
Kalman filter, the relative weighting shifts smoothly from the feedforward 

process towards the feedback process over the first second of movement and 
then remains approximately constant, resulting in the asymptote of the vari- 

ance propagation. The Kalman filter model suggests that the peaking and 
gradual decline in bias is a consequence of a trade-off between the inaccura- 

cies accumulating in the internal simulation of the arm’s dynamics and the 
feedback of actual sensory information. Figure modified from Ref. c. 

a Goodwin, G.C. and Sin, KS. (1984) Adaptive Filtering Prediction and Control, 
Prentice-Hall 

b Kalman, R.E. and Bucy, R.S. (1961) New results in linear filtering and prediction 

J. Basic Engineering (ASME) 83D. 95-108 
c Wolpert, D.M., Ghahramani, 2. and Jordan, M.I. (1995) An internal model for 

sensorlmotor integration Science 269, 1880-1882 

state estimator, known as an observeP, produces its estimate 

of the current state by monitoring the stream of inputs 
(motor commands) and outputs (sensory feedback) of the 
system (Fig. 1). By using both sources of information the 
observer is able to reduce uncertainty in the state estimate 
and becomes robust to sensor failure. In addition, as there 
are delays in sensory feedback, the observer can use the 
motor command to produce more timely state estimates 
than would be possible using sensory feedback alone. 

Although many studies have examined integration 
among purely sensory stimuli (for a psychophysical review 
see Ref. 30) little is known of how sensory and motor infor- 
mation is integrated during movement. When you move 
your arm in the absence of visual feedback, there are three 
basic methods the central nervous system can use to obtain 
an estimate of the current state, the position and velocity, of 
the hand. The system can make use of sensory inflow (the 
information available from proprioception), it can make use 

of motor outflow (the motor commands sent to the arm), or 
it can combine these two sources of information. While sen- 
sory signals can directly cue the location of the hand, motor 
outflow generally does not. For example, given a sequence 
of torques applied to the arm (the motor outflow) an inter- 
nal model of the arm’s dynamics is needed to estimate the 
arm’s final configuration. To examine whether an internal 
model of the arm is used we have studied a sensorimotor in- 
tegration task in which subjects, after initially viewing their 
arm in the light, made arm movements in the dark”. The 
subjects’ internal estimate of hand location was assessed by 
asking them to visually localize the position of their hand 
(which was hidden from view) at the end of the movement. 
The bias of this location estimate, plotted as a function of 
movement duration, showed a consistent overestimation 
of the distance moved (Fig. 3A). This bias showed two dis- 
tinct phases as a function of movement duration, an initial 
increase that reached a peak after one second followed by 
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Box 2. The mixture of experts model of visuomotor learning 

Based on the principle of divide-and-conquer, a general compu- 

tational strategy for designing modular learning systems is to treat 
the problem as one of combining multiple models, each of which 

is defined over a local region of rhe input space. Such a strategy 
has been introduced in the ‘mixture of experts’ architecture for 

supervised learningh. The architecture involves a set of function 

approximators known as expert networks or modules (usually 
neural networks) that are combined by a classifier known as a 

gating network. These networks are trained simultaneously so as 
m split the input space into regions where particular experts can 

specialize. The gating network uses a soft split of the input data, 
thereby allowing data to be processed by multiple experts; the 

contribution ofeach is modulated by the gating module’s estimate 
of the probability that each expert is the appropriate one to use. 

Each expert is assumed to be responsible for a Gaussian region of 
input space which leads to the gating unit using a multinomial 

logit model m partition the input space. As the input varies be- 
tween two experrs’ regions the relative contributions of their Out- 

puts to the final output will change in a sigmoidal fashion. This 
model has been proposed as a model both of high-level vision’ 

and of the role of the basal ganglia during sensorimotor learn- 

ingd. The mixture of experts approach has been extended to a 
recursively-defined hierarchical mixture of experts (HME) archi- 

tecture in which a tree of gating networks combines the expert networks into 
successively larger groupings that are defined over nested regions of the input 

space’. A maximum likelihood learning algorithm for the HME architecture 
has been derivedh based on the Expectation-Maximization (EM) principle 

from statistics! 
A modular decomposition model of visuomotor learning is shown in 

which two different maps can be learned for the same visual target locations. 

This represents the simplest instantiation of the hierarchical mixture of 

experts, having only one level and two experts. The model maps target and 
starting locations to motor outputs, m, which could represent, for example, 

the final hand location or movement vector. Each expert learns a different 
mapping between target locations and nmmr outputs appropriate for one 
of the starting locations, S2 or S6. The contribution of each expert’s output, 

ms2 and w,, to the final motor output, m, is determined by the gating mod- 

ule’s output, p. The ourput p reflects the probability that expert S6 is the cot- 
rect module to use for a particular starting location. At p values of 1 or 0 the 

final output is determined solely by the output of expert S6 or expert S2 

Target location Starting location 

I 

respectively, whereas at intermediatevalues ofp both experts contribute to the ‘( 
final output. Figure modified from Ref. g. 

a Jacobs, R.A. eta/. (1991) Adaptive mixture of local expertr Neural Comput. 3, 79-87 : 

b Jordan, M.I. and Jacobs, R.A. (1994) Hierarchical mixtures of experts and the EM 
algorithm Neural Comput. 6, 181-214 

c Jacobs, R.A., Jordan, M.I. and Barto, A.G. (1991) Task decomposition through 
competltion in a modular connectionist architecture: The what and where wsion 
tasks Cognit SC;. 15(2), 219-250 

d Graybiel, A.M. et al. (1994) The basal ganglia and adaptive motor control Science 
265, 1826-1831 

e Jordan, M.I. and Jacobs. R.A. (1992) Hierarchies of adaptive experts, in Advances in 

Neural Information Processing (Moody. J., Hanson, 5. and Lippmann. R., edr), 
pp. 985-993, Morgan Kaufmann 

f Dempster, A.P.. Laird. N.M. and Rubin, D.8. (1977) Maximum likelihood from 
incomplete data via the EM algorithm J. Roy. Stat. SM. B 39, l-38 

9 Ghahramani, Z. and Wolpett. D.M. (1997) Modular decomposition in visuomotor :( 

learning Nature 386,392-395 

a transition to a region of gradual decline. The variance of 
the estimate also showed an initial increase during the first 
second of movement after which it plateaued (Fig. 3B). 

A model of this sensorimotor integration process which 
incorporates an internal forward model has been developed 
to account for these localization errors (see Box 1 for de- 

tails). Using this internal forward model of the arm, the 
process integrates two sources of information, efferent out- 
flow and reafferent sensory inflow, in an attempt to provide 
optimal estimates. This model, unlike simpler models that 
do not integrate both sensory and motor information, ac- 
counts for the empirical data (Fig. 3C,D)3’. This suggests 
that a forward model is used to maintain an estimate of the 
state of the motor system. 

Motor learning 
Internal models, both forward and inverse, capture infor- 
mation about the properties of the arm. However, these 

properties are not static but change throughout life both on 
a short time-scale, due to interactions with objects in the en- 
vironment, and on a longer time scale, due to growth and 
injury. Internal models must therefore be able to adapt to 
changes in the properties of the arm. Several computational 
approaches to learning an inverse model have been pro- 
posed (for a review see Ref. 32). 

Recent work on dynamic learning has focused on the 

representation of the inverse model. If subjects make point- 
to-point movements in a force field generated by a robot at- 
tached to their hand it has been shown that over time they 
adapt and are able to move naturally in the presence of the 
field. This can be interpreted as adaptation of the inverse 
model or the incorporation of an auxiliary control system to 
counteract the forces during movement. Several theoretical 
questions have been addressed using this paradigm. The 
first explored the representation of the controller and in 
particular whether it was best represented in joint or 
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Cartesian space15. This was achieved by adapting subjects to 
the field in one part of the workspace and investigating the 
generalization of this learning in another part of the work- 
space. By assessing in which coordinate system the transfer 
occurred evidence was provided for joint-based control. 
Another important advance was made in a study designed 
to answer whether the order in which the states (position 
and velocities) were visited was important for learning or 
whether having learned a force field for each stare was 
enough to make learning robust to visiting the states in a 
novel ordersi. These findings showed that the order was 
unimportant and argue strongly against rote learning of 
individual trajectories. Motor learning of such force fields 
undergoes a period of consolidation after exposure co the 
field’“. Indeed, the subjects’ ability to perform in a pre- 
viously experienced field was disrupted if a different field 
was presented immediately after the initial experience. 
Consolidation of this motor learning appears to be a grad- 
ual process because experience of a second field four hours 
after the first had no effect on subsequent performance in 
the firsr field. This suggests rhar motor learning undergoes a 
period of consolidation during which the motor learning or 
memory is fragile and may be disrupted by different motor 
learning. 

While these approaches have focused on how a single 
internal model could be used in motor control, recent mod- 
els have begun to investigate the computational advantages 
of using a set of internal models. This strategy is based on 
the principle of ‘divide-and-conquer’, in which a complex 
task is decomposed into subtasks, each learnt by a separate 
module. This straregy has recently been formalized into a 
computational model of learning known as rhe ‘mixture-of- 
experrs”i-i’, This model consists of a set of expert modules 
whose outputs are combined by a single gating module. The 
system simultaneously learns to partition the task into sub- 
tasks (the role of the gating module) and co learn each of 
these subtasks (the role of the experts). The gating module 
smoothly combines the ourput of each of the experts based 
on the estimated probability that each expert will produce 
the desired output. 

The mixture of experts model has been proposed to ac- 
count for experimental data on visuomotor learning’” (see 
Box 2). The ability of subjects to point accurately at a target 
(T) from seven different starting locations (S l-S7) was as- 
sessed in the absence of visual feedback in two conditions, 
before and after a novel remapping (Fig. 4). During the ex- 
posure phase a virtual reality system was used so that the 
single visual target location (T) was remapped to two differ- 
ent hand positions depending on the starting location (S2 
or S6) of the movement. Subjects repeatedly traced out a 
visual triangle S2-S6-T-Sb-S2-T-S2, thereby alternately 
pointing to the target from S2 and S6. In Fig. 4A, the dot- 
ted lines represent the path taken by the visual feedback of 
the finger location and the solid line represents the actual 
parh taken by the finger. The single visual locarion (T) is, 
therefore, remapped into two distinct finger locations de- 
pending on whether the movement starts from S2 or S6. 
Such a perturbation creates a conflict in the visuomotor 
map which captures the (normally one-to-one) relation be- 
tween visually perceived and actual hand locations. One 
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Fig. 4 Modular decomposition and visuomotor learning 
(A) The remapping of the visuomotor map dependent on start- 
ing location. Dotted lines represent the path taken by the visual 
feedback, solid lines represent the actual path of the finger. 
(6) Mean change as a 95% confidence ellipse (eight subjects) in 
pointing behaviour from each starting location (51-57) induced 
by the visuomotor perturbation. (C) Estimated mixing pro- 
portion (see Box 2 for details), p, and 95% confidence intervals 
for the sewn starting locations. Modified form Ref. 38. 

way to resolve rhis conflict is to develop two separate visuo- 
motor maps (the expert modules), each appropriate for one 
of the two starting locations (see Box 2 for details). A sep- 
arate mechanism (the gating module) then combines the 
ourputs of rhe two visuomotor maps, based on the starting 
location of the movement. As in previous studies of the 
visuomotor syscem3”, the internal structure of the system can 
be probed by investigating the generalization properties in 
response to novel inputs, which in rhis case are rhe starting 
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Outstanding questions 

l Is there a unifying principle of planning which can account for the 
pattern of movement at all levels in the motor hierarchy? 

l What is the advantage of making movements which are optimal for a 
particular cost function such as jerk? 

l Which of the possible computational uses of forward models is actually 
used within the central nervous system? 

l Can models of motor learning be developed which, like the human 
motor system, are robust enough to learn multiple tasks, show powerful 
generalization to new tasks and an ability to switch between tasks 
appropriately? 

locations on which the system has not been trained. As 
predicted by the mixture of experts model, subjects were 
able to learn both conflicting mappings (Fig. 4B), and to 
smoothly interpolate, in a sigmoidal fashion, from one 
visuomotor map to the other as the starting location was 
varied (Fig. 4C). These results therefore suggest that modu- 
lar decomposition is a feature of visuomotor learning. 

Conclusion 
The aim of this review was to highlight several important 
themes in motor control. We have reviewed examples of 
several models and outlined a computational approach which 
can form a framework in which experimental studies can be 
designed and interpreted. The challenge ahead is to develop 
these computational approaches so that they can be applied, 
not only to psychophysical experiments, but also studies in 
neurophysiology, neuropsychology and neuroimaging. 
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