Context Estimation for Sensorimotor Control

PHILIPP VETTER AND DANIEL M. WOLPERT
Sobell Department of Neurophysiology, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom

Received 18 January 2000; accepted in final form 11 April 2000

Vetter, Philipp and Daniel M. Wolpert. Context estimation for sensorimotor control. J Neurophysiol 84: 1026–1034, 2000. Human motor behavior is remarkably accurate and appropriate even though the properties of our own bodies as well as the objects we interact with vary over time. To adjust appropriately, the motor system has to estimate the context, that is the properties of objects in the world and the prevailing environmental conditions. Here we show that to determine the current context the CNS uses information from both prior knowledge of how the context might evolve over time and from the comparison of predicted and actual sensory feedback. We show that these two sources of information may be modeled within the CNS and combined to derive an accurate estimate of the context which adjusts motor command selection. This provides a novel probabilistic framework for sensorimotor control.

INTRODUCTION

Our ability to generate accurate and appropriate motor behaviors relies on tailoring our motor commands to the prevailing movement context. This context embodies parameters of both our own motor system, such as the level of muscle fatigue, and the outside world, such as the weight of a bottle to be lifted. As the consequence of a given motor command depends on the current context, the CNS has to estimate this context so that the motor commands can be appropriately adjusted to achieve accurate control.

In general, the CNS does not have direct access to the true context but can gain information about it through sensory feedback. The estimation problem arises because our sensors are noisy, time-delayed, and often provide incomplete information about the context. Also the context is not static but tends to evolve in a structured but often uncertain way. For example the weight of a bottle tends to decrease as we pour from it, and muscles fatigue with use. Thus as the context evolves over time, sensory feedback can provide information about the current context. In the presence of an unknown and possibly changing context, the CNS can continuously estimate the current context using two types of processes. First, the CNS could compare the actual sensory feedback with the feedback predicted for each possible context. This allows the CNS to estimate the likelihood of each context being present given a particular sensory feedback signal. Second, the CNS could model how the context is likely to evolve over time. Given these two types of processes, the CNS can then estimate the probability of being in a particular context (see METHODS for details).

Previous studies have shown that the motor system can adapt, at least partially, to multiple contexts, such as altered relationships between actual and perceived finger location (Kravitz and Yaffe 1972; Welch et al. 1993) and is able to select the appropriate behavior when the context is cued by gaze direction (Hay and Pick 1966; Kohler 1950; Shelhamer et al. 1991), body orientation (Baker et al. 1987), arm configuration (Gandolfo et al. 1996), or an auditory tone (Kravitz and Yaffe 1972). When the cue given is intermediate between two cues each associated with a different context, the behavior seen is consistent with mixing of the learned behaviors (Ghahramani and Wolpert 1997).

Whereas these previous studies have shown how prior cues determine movement selection in multiple task learning or how sensory feedback during movement is used within a single context (e.g., Elliott et al. 1995), we have sought to study how sensory information is used on-line to estimate the current context and thereby control movement. To achieve this, subjects received visual feedback under one of two contexts during pointing. The contexts were two different relationships between perceived and actual finger position. This relationship was generated experimentally using virtual reality.

First, we explored how visual feedback limited to brief instances during a pointing movement affected pointing behavior (rotation + translation experiments) after learning to point under two different contexts. The timing of feedback and which context the feedback was generated by was systematically varied. We assessed how such feedback affected pointing. In the first, the rotation experiment, the two contexts were chosen so that the difference between them increased into the movement, while in the second, the translation experiment, it remained fixed.

Our results indicated that recent feedback has a greater effect on pointing than earlier feedback. To study the mechanism by which more recent feedback may be made more salient than older feedback, we conducted a third, transition experiment. Here we tested two hypotheses that made qualitatively different predictions about pointing behavior when visual finger feedback is withheld for several movements. The results of all three experiments are then placed within a probabilistic framework of context estimation.

METHODS

Apparatus

Subjects made unconstrained movements to visual targets under stereoscopic visual feedback (Fig. 1A) (for full details of the system, contact the authors).
above the subject’s head (Fig. 1A). A horizontal front-reflecting semi-silvered mirror was placed face up below the subject’s chin (30 cm below the projection screen). The subject viewed the reflected image of the rear projection screen through field-sequential shuttered glasses (Crystal Eyes, Stereo-Graphic, San Rafael, CA) by looking down at the mirror. The SGI displayed left and right eye images of the scene to be viewed at 120 Hz. The shuttered glasses alternately blanked the view from each eye in synchrony with the display thereby allowing each eye to be presented with the appropriate planar view—subjects therefore perceived a three-dimensional scene.

Prior to each session the position of the IREDs relative to the projected image position was calibrated for each subject. By illuminating the semi-silvered mirror from below, the virtual image and the IRED could be lined up by eye. Each subject calibrated on 12 points on a three-dimensional grid covering the workspace. Image positions were linearly regressed onto IRED positions, and this fit was subsequently used on-line to position the target and finger images. Mean calibration errors in cross-validation sets were smaller than 1.0 cm.

During the experiments an opaque sheet was fixed beneath the semi-silvered mirror, thereby preventing any direct view of the arm. Finger feedback was provided as a 4-mm green wire cube in the virtual scene, and targets were presented as 4-mm-diam colored spheres. A static grid was displayed in the horizontal plane underneath the targets. By extinguishing the cube, which represented the finger position, movements in the absence of visual finger feedback could be examined. Computer-controlled discrepancies could also be introduced between the actual finger position and the displayed finger position.

Subjects

All subjects in the rotation ($n = 9$), translation ($n = 8$), and transition ($n = 8$) experiments were right-handed, gave their informed consent and were naive to the purpose of the experiment. Three subjects who had participated in the rotation experiment also participated in the translation experiment after an interval of at least 3 wk.

Rotation experiment

The aim of the experiment was to adapt subjects to two different contexts, that is visuomotor mappings, to examine how sensory feedback during a movement is used to estimate the current movement context. Trials were initiated by a movement to the start target (8 cm right of, 21 cm in front of and 28 cm below subjects’ eyes) with visual feedback of finger position only given within 4 cm of the start. The actual trial was a pointing movement to a continuously displayed target 25 cm ahead (mean duration 1.15 s; Fig. 1A). Finger feedback was either withheld for the entire movement (no feedback), provided for the entire movement (full), or only provided for one (single) or two (double) brief instances of 50 ms. When provided, the visual feedback of the finger location was either veridical or rotated 7° to the right about the starting target in the horizontal plane (see Fig. 1B; note for clarity the angle is exaggerated). Note that the two contexts are indistinguishable at the start of the movement.

To assess subjects’ pointing behavior before any learning, subjects initially performed 18 trials with full veridical feedback followed by 18 trials with a brief instance of either veridical (9) or rotated (9) feedback 10 cm into the movement, in a pseudo-random order that was different for each subject. To adapt subjects to the two visuomotor contexts, subjects then performed full-feedback trials under veridical (18 trials) or rotated (18 trials) feedback in pseudo-random order.

To examine how sensory feedback during the movement affects the context estimate, we then examined (postlearning) subjects’ pointing when they received either no, one, or two brief instances of visual feedback during the movement. Single instances of feedback (Fig. 1B) were given 4, 6, 8, 10, 12, 14, or 16 cm into the movement, and the feedback presented was either veridical or rotated. In double feedback
trials an additional instance of feedback was given at 10 cm. The two instances of visual feedback were either consistent, that is veridical: veridical or rotated:rotated (Fig. 1C), or inconsistent, that is veridical: rotated or rotated:veridical (Fig. 1D). Each of the 39 trial types—1 no feedback
t + 7 (positions) × 2 (contexts) single feedback + 6 (positionsexcluding 10 cm) × 2 (contexts for 1st instance) × 2 (contexts for 2nd instance) for double feedback—was presented nine times in a pseudo-random order, interspersed with full feedback trials every five trials to prevent decay of learning. Movements with no or only brief
visual feedback ended when finger velocity dropped below 3 cm/s, while movements with full visual feedback terminated when the finger was within 0.8 cm of the target.

Translation experiment
The Translation experiment differed from the rotation experiment in one main respect—the two contexts were a 0.75-cm leftward and a 0.75-cm rightward translation, which were introduced gradually over the first 4 cm of the movement (Fig. 1, E–G). Trials were initiated by moving the finger within 4 mm of the start target. Subjects were familiarized with 32 full veridical feedback trials followed by eight trials with no visual feedback. To assess prelearning pointing, subjects performed 16 trials with either left-translated (8) or right-translated (8) feedback 10 cm into the movement. During learning, subjects received either full left-translated (36 trials) or full right-translated (36 trials) feedback on each trial in a pseudo-random order. In the post-learning trials, single instances of feedback were given at 5, 8, 10, 12, or 15 cm, while in double feedback trials, as in the rotation experiment, an additional instance of feedback was given at 10 cm. Each of the 27 conditions was presented eight times, interspersed with full feedback trials every three trials.

Transition experiment
The aim of the transition experiment was to adapt subjects to two different visuomotor contexts to examine pointing behavior when feedback is withheld for several movements. Subjects started trials by moving their finger behind a notional fronto-parallel plane 18 cm in front of the eyes without visual feedback. A trial consisted of a variable number of pointing movements to successively neighboring targets in the corners and center of an 11 cm vertex horizontal hexagon (center, 6 cm right of, 28 cm in front of and 35 cm below subjects’ eyes). Target order was pseudo-random, although the first movement was to one of the three most distal targets.

To factor out subjects’ pointing errors in the absence of visual feedback, the first trial consisted of 5 movements with visual feedback followed by 30 movements without. The average height over the last 15 movements was taken as the subject’s estimate of the correct target height, and all subsequent verbal feedback was corrected by the discrepancy between this height and the verbal height. Before learning, we examined the effects on pointing of exposing subjects to a novel context, under which subjects had to point 4 cm higher than usual to be on target. Subjects performed seven trials consisting of three movements with feedback followed by four without. During learning, subjects made movements alternately with and without feedback. Each time feedback was turned on again, they had to point either 4 or 8 cm too high in a pseudo-random order with equal probability. Therefore when feedback reappeared, there was a 0.5 chance that the context was the same and 0.5 that it had changed. The 12 learning trials consisted of eight blocks of three movements with feedback followed by four movements without.

For analysis, trials were split into movements on the basis of velocity profiles smoothed with a fifth-order, zero phase lag, low-pass filter with a 5 Hz cutoff. Movements started when the velocity exceeded 0.3 cm/s.

Context estimation model
The rotation and translation experiments were quantitatively fitted with the context estimation model (for a qualitative description of the model, see DISCUSSION) shown in Fig. 2. Here, the context at time t, C_t, is an n dimensional vector of indicator variables, which specifies which of n possible discrete contexts we are acting in, for example rotated or visual feedback. At each time step, one element is one, reflecting the current context, while all others are zero. The context can change over time, and this can be represented by an $n \times n$ transition matrix whose elements determine the probability of transitioning from one context to another, $P(C_t | C_{t-1})$.

We assume that the CNS starts with estimates of the context at time 0 given by the prior probability of each context being present C_0 (we use \hat{C} to denote an estimate). If at time $t - 1$, our context estimate is \hat{C}_{t-1}, then at time t our best estimate before considering sensory feedback is determined by the transition probability, $\hat{C}_t = \hat{P}(C_t | C_{t-1})\hat{C}_{t-1}$. If no sensory feedback is available, then modeling how the current context exists is the best the CNS can do, that is $\hat{C}_t = \hat{C}_t$. However, sensory feedback provides additional information. As different contexts lead to differing predictions of what the sensory feedback should be, the context estimate can be improved by determining how likely the observed sensory feedback is for each possible context. Using Bayes’ rule $C_t = {\hat{P}(S_t | C_t) \hat{C}_t} / \sum_{\tilde{C}} P(S_t | \tilde{C}) \tilde{C}$, where \otimes is element-wise multiplication and T denotes transpose.

We took transverse end points on individual trials, x, as an index of the CNS’s final context estimate (Ghahramani and Wolpert 1997). These were considered a mixture of the learned end points under the two contexts, for example $x = x_{\text{rot}} \cdot (1 - \alpha) + x_{\text{ver}} \cdot \alpha$, weighted by the CNS’s recursively derived estimate of the context, $x = C_t$. To reduce the number of free parameters, the learned end points e were parametrized as deviations $d_{e\text{rot}}$ and $d_{e\text{ver}}$ from the observed no-visual feedback pointing positions in the rotation and translation experiments, reflecting the degree of adaptation to the contexts, which in general is not complete (Welch 1986). We assumed that visual sensory feedback, when present, represented the spatial location of the finger corrupted by Gaussian noise with fixed variance σ^2. Therefore the likelihood of a particular finger position given context 1, is $(2\pi\sigma^2)^{-1/2} \exp\{(1-(S_1-S))^2/2\sigma^2\}$, where S is the predicted finger position given context 1. The transition probability matrix $P(C_t | C_{t-1})$ was parametrized by a single parameter q of the context changing at each time step (and thus a probability of $1 - q$ of staying the same).

The four free parameters of the model, the transition probability q, the variance of the noise in visual feedback σ^2, and the maximum end-point deviations from the no-feedback condition in each experiment $d_{e\text{rot}}$ and $d_{e\text{ver}}$, were fit to the 64 data points from both experiments simultaneously. Each trial was simulated by starting with $C_0 = \{0.5, 0.5\}$ and using the parameters to simulate context estimation throughout a trial incorporating any instances of feedback, if present. The
final context estimate at the end of the movement was used to predict
the position the subject would point to and the four parameters were
adjusted using the Simplex algorithm to minimize the squared error
between the predicted and actual pointing location.

RESULTS

Rotation experiment

Before learning, when only a single instance of veridical
feedback was given 10 cm into the movement, the finger path
was roughly straight (Fig. 3, thin solid line). When instead a
single instance of right-rotated feedback was given 10 cm into
the movement, this resulted in subjects compensating by point-
ing more to the left of the target (thin dotted line). As visual
feedback was only given 10 cm into the movement, the paths
for both the veridical and rotated feedback were, as expected,
not significantly different before 10 cm. After learning, a single
brief instance of finger position feedback affected ongoing
pointing movement differently than before learning (Fig. 3,
compare dotted and solid lines). Specifically, there was an
increased difference in end points between trials with single
veridical (thick solid line) or rotated feedback (thick dotted
line) at 10 cm. Also, movements started with an initial bias
slightly to the left of the true target.

We examined how the distance at which feedback was given
affected pointing and found systematic changes in the move-
ment paths (Fig. 4). When no visual feedback was given during
the movement (black line Fig. 4), subjects pointed to a place
intermediate between the end points under either of the two
contexts. When a single instance of visual feedback was given,
this biased pointing in a manner that depended both on the type
of feedback and when it was given. A single instance of
veridical feedback given during the movement biased pointing
away from the no-feedback condition toward the true veridical

instance of feedback

<table>
<thead>
<tr>
<th></th>
<th>early</th>
<th>late</th>
<th>at 10 cm</th>
<th>no feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>veridical</td>
<td>•</td>
<td>■</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>rotated</td>
<td>•</td>
<td>■</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

FIG. 3. Rotation experiment: finger paths before (---) and after learning (---), averaged over all subjects’ paths. End points are shown with 95%
confidence limits.

FIG. 4. Finger paths under single (A and B), double-consistent (C and D), and double-inconsistent (E and F) visual feedback
after learning, averaged over subjects for each condition. A and B: for each path, a single instance of feedback was provided at the
distance indicated by the same-colored square on the abscissa. Finger end points are marked with circles for clarity. In C and D,
an additional instance of consistent feedback was given after the finger had moved 10 cm (marked by a blue or red square), while
in E and F, an additional instance of inconsistent feedback was provided at 10 cm.
end point (Fig. 4A). The amount of bias was smaller for feedback given early in the movement (red lines) than for feedback given later (yellow lines). Similarly, when a single instance of right-rotated feedback was given (Fig. 4B), subjects compensated by pointing further to the left than in the absence of feedback. Again this effect was greater for feedback given later in the movement (blue lines) than for earlier feedback (purple lines).

When in addition to this single instance of visual feedback a second consistent instance of feedback was given at 10 cm, the bias seen was enhanced for both the veridical:veridical (Fig. 4C) and rotated:rotated condition (Fig. 4D). However, when two inconsistent instances of feedback were given, a different pattern was observed. Figure 4E shows the pattern of trajectories seen when rotated visual feedback is given at 10 cm and a single instance of veridical feedback is given at a different location during the movement. When the single instance of veridical feedback is given before 10 cm and the rotated feedback is experienced second (orange lines), pointing is biased toward the left, appropriate for rotated feedback. When this single instance of veridical feedback is given after 10 cm and the rotated feedback is therefore experienced first (yellow lines), the pointing is biased toward the veridical location of the target. Therefore when inconsistent instances of visual feedback are given, the context of the second instance of visual feedback dominated pointing behavior. An analogous pattern was observed when veridical feedback was given at 10 cm and a single instance of rotated feedback at other locations (Fig. 4F).

When limited information as to the prevailing context is available (only brief feedback), two different strategies could be used. First, subjects could estimate how likely each context is and then mix the behaviors appropriate for each context weighted by the probability of being in that context. This strategy mathematically minimizes the expected mean squared pointing error (Abidi and Gonzalez 1992). Alternatively, subjects could simply estimate which context was more likely and then switch to the behavior appropriate for that context. While both strategies lead to the same mean end points, individual end points should cover the spectrum for mixing, while being bimodally distributed for switching. The histogram of transverse finger end points in brief feedback trials (Fig. 5A) is clearly not bimodal, even though the full feedback trials during learning show that training was on a bimodal data set (Fig. 5B). Subjects show a range of pointing locations, suggesting that they are not simply choosing one of the contexts.

While the full trajectories contain information about the context, they can only be interpreted if a model of the control-
ment (●), pointing was approximately straight. Single instances of feedback produced constant deviations from the no-feedback condition, regardless of when visual feedback was given (Fig. 7). To examine the time course of the change in pointing behavior induced by a single instance of feedback, we calculated the feedback-triggered average of the transverse finger position for both left-translated (Fig. 8 dark gray) and right-translated (light gray) feedback. This shows the average position aligned to the time feedback was given. The paths under left- and right-translated feedback diverged significantly 300 ms after a single brief instance of visual feedback ($P < 0.01$).

The constant pointing deviations contrast with the rotation experiment where later single instances had a greater effect on pointing. This suggests that the difference between the two contexts, which is greater for the translations than the rotations early in the movement, affects the way the context is estimated. If the difference between contexts was the only determinant of pointing behavior, then one would predict that in the inconsistent trials pointing end points should be identical to the no-feedback condition since averaging a leftward and a rightward translation would result in pointing straight ahead. However, the second instance of feedback again had a greater influence on the pointing end point (Fig. 6 double inconsistent), indicating that there is also a temporal component influencing context estimation. This suggests that both temporal and spatial attributes of the feedback influence context estimation.

There are two contrasting possibilities that can account for this temporal effect. First, in a weighting strategy context estimates are only updated when sensory information is available. So when a new piece of visual information is received, it is deemed more important than older information and therefore contributes more to the estimate. However, such a weighting strategy ignores information about how the context evolves over time, which could be used to update the context estimate even in the absence of visual feedback. Such a transition strategy uses knowledge of the way the context evolves to update the estimate at all times. For example, consider a situation in which two contexts are presented with equal probability and that transitions occur randomly between them (Fig. 9A). In the presence of continuous visual feedback, the context estimate is likely to track the true context. If visual feedback is removed, the weighting strategy maintains the current context estimate until new information is provided (Fig. 9B). However, in the transition strategy, the context estimate can change in the absence of visual feedback (Fig. 9C). If at some point in time we are certain that we are in context 1 and then visual feedback is turned off, then at the next point in time, the context may have transitioned to context 2, and therefore our estimate of context 1 should decrease. This process continues so that whatever the initial probability of each context, the probability of either contexts converges toward the overall probability of each context being present, that is, 0.5 in this case. This example is analogous to the rotation and translation experiments in which there are only two contexts, and the presentation of each is probabilistic and equally likely.

Transition experiment

To distinguish between weighting and transition strategies of context estimation over time, we conducted an experiment in which we could monitor explicitly the development of the context estimate in the absence of visual feedback. Before learning, when subjects had to point 4 cm too high, the finger
drifted downwards toward the veridical height on removal of visual finger feedback. Subjects were then trained on two contexts (unnoticed) in which subjects had to point either 4 or 8 cm too high in a pseudo-random order with equal probability, interspersed by movements without visual finger feedback. Having learned these two new contexts, the prediction is that in the absence of visual feedback the context estimate should converge to between 4 and 8 cm. Specifically, before learning the finger should drop from 4 cm, while after learning it should rise when feedback is eliminated. As predicted, the finger rose significantly from 4 cm after learning compared with before learning (1-tailed paired t-test, $P < 0.002$, bottom solid and dotted lines, Fig. 9D). This result lends strong support to the transition strategy for context estimation in which the estimates are updated even in the absence of visual feedback.

We fitted the data in the rotation and translation experiments assuming that the CNS uses such a transition strategy to update its context estimate in the absence of sensory feedback and that sensory feedback, when available, is noisy (see METHODS and DISCUSSION for details). The former ensures that recent feedback is more salient than older feedback, while the latter ensures that contexts are easier to distinguish the larger the discrepancy between them. The fit of this model captures the features of the single, double-consistent, and inconsistent feedback in both the rotation and translation experiments (Figs. 6 and 7, solid lines, $r^2 = 0.95$ $P < 0.001$, parameters are $q = 0.45$ s$^{-1}$, $\alpha^2 = 0.22$ cm2, $d_{ver} = 1.3$ cm and $d_{rot} = 1.3$ cm; see METHODS for details). Fitting each subjects’ data individually gave a mean $r^2 = 0.86$ (range 0.74–0.95) Comparison of the full model to reduced models which either had no intra-move- ment context transitions ($q = 0$) or no noise in sensory feedback ($\alpha^2 = 0$) showed that these fits were significantly worse than the full model, even when taking into account the reduced number of parameters ($P < 0.001$).

DISCUSSION

We have investigated how subjects use sensory information to determine the context of their movement, that is, the properties of objects in the world and the prevailing environmental conditions. Subjects learned to point to a single target under two different contexts, for example rotated and veridical visual feedback, which were chosen to be indistinguishable at the start of the movement. After learning, the majority of the movement was made without visual feedback. When no feedback was given, subjects pointed to a location intermediate to those appropriate for each context. A single instance of feedback biased the end point toward the location appropriate for the context presented. When the difference between the finger’s visual location under the two contexts increased with distance into the movement (rotated vs. veridical feedback), later feedback caused a greater deviation from the no feedback condition but not when it remained constant (leftward vs. rightward translation). Two instances of consistent visual feedback had a greater effect than one alone. However, when the two instances of inconsistent visual feedback were inconsis- tent, the second had a far greater influence. To examine whether this ordering effect was due to weighting of information by its recency or due to the CNS modeling how the context evolves over time, we explored the way in which the context estimate evolved in the absence of visual feedback. Subjects pointed in a situation where the context varied with equal likelihood back and forth between two possibilities. When feedback had been turned off, subjects gradually adopted a behavior intermediate to that for either context. This behavior is consistent with the CNS modeling how the context is likely to evolve, but cannot be explained by just weighting visual feedback according to its recency (see also Fig. 9, A–C).

All three experiments can be parsimoniously captured in a general probabilistic framework of how the context evolves over time. Figure 2 shows a model of how the context evolves (time increasing to the right), with the true context at time t given by C_t. The context can change over time, which is represented by a transition matrix $P(C_t|C_{t-1})$ whose elements determine the probability of transitioning from one context to another. This transition matrix can capture both deterministic and probabilistic transitions reflecting uncertainty in the way the world evolves. At each time step, the context will influence the sensory feedback. As our sensors are noisy, sensory feedback is generated from a distribution that is related probabilistically to the current context.

Given this structure of the world, the task of the CNS is to estimate the current context. Two special cases of estimation in the framework of Fig. 2 can be considered. If the CNS assumes the context to remain constant over time, estimation reduces to a discrimination task often studied in sensory psychophysics in which some underlying parameter to be estimated is corrupted by Gaussian noise (Boff et al. 1986). However, such a discrimination model would be unable to capture the time-dependency of the context estimation in our experiment when feedback is inconsistent (Fig. 6, E and F). Alternatively, if sensory feedback is effectively noise free, then the CNS should only use the most recent instance of sensory feedback to estimate the context and would predict a switching type of behavior between contexts—a pattern inconsistent with the smooth end-point variations in our data (Figs. 6 and 7).

By simulating context estimation that assumes both a time-varying context and noisy feedback, we were able to fit our data set with few free parameters (Fig. 6). This implies that the CNS internally models both how the context is likely to evolve over time and the expected sensory feedback given each possible context. During a movement, in the absence of visual information, the context estimate is updated solely using knowledge about how the context evolves over time. Any instances of visual feedback are compared with the sensory feedback predicted for each of the possible contexts. Contexts that lead to small prediction errors are judged more likely. This context estimation model captures the key features of all three experiments both qualitatively and quantitatively (Figs. 6 and 7). First, the model suggests that the probability of each context is estimated and that therefore the optimal behavior is to mix the behaviors appropriate for each of the visuomotor contexts in proportion to their probability. Second, the model assumes sensory feedback to be noisy, thereby making contexts that have large sensory differences easier to distinguish than those with similar sensory feedback, in agreement with our finding that the size of the difference between contexts influences the context estimate. Third, the context estimate is continuously updated, even in the absence of feedback. This is achieved by modeling the likely transitions between contexts and effectively makes newer feedback more salient than old, as observed. Finally, the model predicts that in the absence of visual...
feedback, the context estimate will gradually change toward the prior probability of the contexts. This is because after extended periods without visual feedback, knowing what the context was when you last had feedback provides little information. This prediction was tested and confirmed in the transition experiment.

To visualize the estimation process, the evolution of the context estimate during three simulated movements is shown in Fig. 10. Initially, the probability of context one (rotated feedback) is 0.5, reflecting the experimentally imposed probability of each context. On presentation of a single instance of rotated feedback (Fig. 10, top), the probability of this context increases and subsequently decays slowly. This decay is a result of the continual updating of the context estimate in the absence of feedback and ensures that more recent feedback is deemed more reliable than older feedback. A second consistent instance of rotated feedback (Fig. 10, middle) further increases the probability estimate, which is reflected in the greater bias for two consistent instances of feedback compared with a single instance in Fig. 6, A and D (□ vs. ○). Conversely, a second instance of inconsistent feedback decreases the probability estimate (Fig. 10, bottom).

The estimation model proposed requires the CNS to construct and use two types of internal model—brain processes that simulate the behavior of both the body and the outside world (Ito 1984; Kawato et al. 1987; Merfeld et al. 1999; Miall and Wolpert 1995; Wolpert 1997; Wolpert et al. 1995). First it must model how the context evolves and second the likely sensory feedback given each possible context. This is consistent with recent neurophysiological studies in primates showing that the CNS represents the expected visual feedback for a particular context (Eskandar and Assad 1999) as well as the likelihood of the observed visual feedback given that context (Kim and Shadlen 1999). Previous studies have shown that internal models play a role in maintaining accurate control in the presence of sensory feedback delays (Ito 1984; Miall et al. 1993), generating anticipatory responses (Forssberg et al. 1992; Gordon et al. 1993; Jennmalm and Johansson 1997), and in distinguishing our own actions from externally produced stimuli (Blakemore et al. 1998, 1999; Jeannerod 1997). The necessity for multiple internal models in context estimation comes from the need to predict the sensory consequences of actions for each possible context (Wolpert and Kawato 1998; Wolpert et al. 1998).

Various investigators have looked at how intermittent visual feedback affects accuracy during pointing movements (Spijkers and Spelberberg 1995) and ball-catching (Elliott et al. 1994). In general, movements with intermittent feedback were similar to movements with full visual feedback, with accuracy improving the more and the later visual feedback was given. Similarly a number of studies have addressed how rapidly visual feedback is used to correct ongoing movements, for instance, if the target position changes at movement onset (Castiello et al. 1991; Paillard 1996). While both types of study provide information about how visual feedback is used to refine movement, they were all performed under a single context and therefore do not address how the visual information is used to estimate the context.

Several studies have examined adaptation to multiple contexts but have focused on whether multiple contexts can be learned or cued prior to movement. Welch et al. (1993) found that alternating prism exposure causes dual adaptation. In terms of our framework, subjects learned two different visuomotor contexts and were able to switch between them rapidly when given full visual feedback. While Welch kept the context constant within trials, we explored, whether switching could also occur within trials. Ghahramani and Wolpert (1997) had subjects point to a single target under two different visuomotor contexts. In their experiment, each visuomotor context was linked to a particular starting position. When pointing from starting locations intermediate between the two learned, subjects’ output was a mixture of that observed from either starting point. Within the model, the starting position determines the prior expectation of each mapping, and because no feedback is given during the movement, this estimate does not change.

We have shown that human pointing behavior is consistent with the CNS estimating the movement context using two types of internal model. The first captures the way in which contexts change over time and the second the likely sensory feedback given each context. Using either model in isolation is insufficient to reproduce the data. This provides a novel framework for sensorimotor control in which internal models must learn the probabilistic structure of both the world and their own sensors and combine these two sources of information to estimate the current context, thereby achieving accurate control.

We thank S. Goodbody, A. Hamilton, A. Korenberg, K. Sumner, and A. Witney for comments on the manuscript.

This project was supported by grants from the Wellcome Trust, the Medical Research Council, the Biotechnology and Biological Sciences Research Council, the Human Frontiers and the Royal Society. P. Vetter is funded by the
REFERENCES

Welsh P and Vetter AND D. M. WOLPERT