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Turnham EJ, Braun DA, Wolpert DM. Facilitation of learning
induced by both random and gradual visuomotor task variation. J
Neurophysiol 107: 1111-1122, 2012. First published November 30,
2011; doi:10.1152/jn.00635.2011.—Motor task variation has been
shown to be a key ingredient in skill transfer, retention, and structural
learning. However, many studies only compare training of randomly
varying tasks to either blocked or null training, and it is not clear how
experiencing different nonrandom temporal orderings of tasks might
affect the learning process. Here we study learning in human subjects
who experience the same set of visuomotor rotations, evenly spaced
between —60° and +60°, either in a random order or in an order in
which the rotation angle changed gradually. We compared subsequent
learning of three test blocks of +30°——30°—>+30° rotations. The
groups that underwent either random or gradual training showed
significant (P < 0.01) facilitation of learning in the test blocks
compared with a control group who had not experienced any visuo-
motor rotations before. We also found that movement initiation times
in the random group during the test blocks were significantly (P <
0.05) lower than for the gradual or the control group. When we fit a
state-space model with fast and slow learning processes to our data,
we found that the differences in performance in the test block were
consistent with the gradual or random task variation changing the
learning and retention rates of only the fast learning process. Such
adaptation of learning rates may be a key feature of ongoing meta-
learning processes. Our results therefore suggest that both gradual and
random task variation can induce meta-learning and that random
learning has an advantage in terms of shorter initiation times, sug-
gesting less reliance on cognitive processes.

sensorimotor learning; visuomotor rotation; contextual interference;
learning to learn; structural learning

WHEN HUMANS OR OTHER ANIMALS practice one or more tasks they
are often subsequently able to learn related tasks more rapidly.
This phenomenon of “transfer learning” or “learning to learn”
has been demonstrated for cognitive tasks in animals (Harlow
1949; Warren 1965; Mackintosh and Little 1969; Schrier 1984;
Langbein et al. 2007) and humans (Duncan 1960; Halford et al.
1998; Tenenbaum and Griffiths 2001; Kemp and Tenenbaum
2009) and more recently for sensorimotor control tasks in
humans (Welch et al. 1993; Roller et al. 2001; Seidler 2004,
2007; Cohen et al. 2005; Seidler 2007; Braun et al. 2009a,b;
Mulavara et al. 2009).

Many of these studies used a random training sequence of
tasks. Such frequent changes in training task can contribute to
greater retention and better transfer, even though performance
during practice might be adversely affected-termed “contextual
interference” (Battig 1966, 1972, 1979; Shea and Morgan
1979; Magill and Hall 1990; Brady 2008; Schweighofer et al.
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2011). For example, Shea and Morgan (1979) trained subjects
on different motor sequences, either with each sequence expe-
rienced repeatedly within a block of trials or with the sequence
randomly changing from trial to trial. The random group
experienced larger errors during training but performed better
in a retention test and generalized better to more complex
motor sequences. Here we ask whether random ordering of the
training tasks is crucial for the induction of meta-learning (i.e.,
adaptation of the learning process itself, such that learning of a
novel task proceeds differently before and after meta-learning)
that manifests as faster learning of novel tasks in the above
studies or whether the same tasks ordered in nonrandom ways
could induce similar meta-learning. The paradigm of visuomo-
tor rotation allows us to present tasks in a randomly or
gradually varying order, since the rotation angle is a continu-
ous variable, whereas movement sequences such as those
employed by Shea and Morgan (1979) can only be varied in a
discrete parameter space.

While in some of the above studies a generic speed up in
motor learning was observed after practice (e.g. Seidler 2004),
other studies reported facilitation effects that were more spe-
cific for tasks that shared similar structural features (See Braun
et al. 2010 for review). Braun et al. (2009b) proposed that the
latter category of facilitation effects was due to subjects learn-
ing the structure that was common to the tasks (‘“structural
learning,” a form of meta-learning). Once this structure is
learned, adaptation to a task conforming to that structure
requires the learning of fewer parameters than if the structure
were not known and so is faster. Transitioning between two
tasks conforming to the structure leads to less interference,
because fewer parameters have to be changed. Braun et al.
showed that randomly ordered exposure to 100 rotation angles
between —90° and +90° increased learning rates on subse-
quent rotations. Further, they showed that random training with
examples from a structure led to preferential exploration along
that structure when confronted with a new task. This demon-
strated that much of the increase in learning rates from random
rotation training is due to structural learning.

Smith et al. (2006) developed a state-space model to de-
scribe the time course of visuomotor and force field learning.
In this model, there are one fast and one slow learning pro-
cesses that contribute to the total motor output. The fast
process both learns and forgets quickly, while the slow process
learns and forgets more slowly. This two rate model can in
some paradigms explain such diverse phenomena as savings,
anterograde interference, spontaneous recovery, and rapid un-
learning. However, this model cannot capture more complex
processes of meta-learning that are likely to require changes to
the learning and forgetting rates (Zarahn et al. 2008), and
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forgetting rates have been shown to be modulated by prior
experience (Huang and Shadmehr 2009). It is an open question
whether meta-learning processes, such as learning-to-learn or
structural learning, can be understood within such a two rate
learning model in which the parameters of the model might
adapt over time. The current study, therefore, both compares
random vs. nonrandom task variation in facilitating new learn-
ing and asks whether such facilitation can be understood as the
learning of parameters within the two rate state-space model
framework.

In a planar reaching task, we exposed three groups of
subjects to a training phase in which they experienced visuo-
motor rotations than changed in angle every 16 trials. The 100
rotation angles experienced in the training phase were evenly
spaced between —60° and +60°. In the “random” group, the
order of the rotations was random whereas in the two “gradual”
groups the order was selected so that the rotation angle, starting
and ending at 0°, changed gradually in either a positive or
negative saw-tooth pattern. A final “control” group made
reaches with veridical feedback, that is without a rotation. All
subjects then received a washout session with veridical feed-
back and were then exposed to three blocks of trials: a +30°
rotation block, followed by a —30° block and a +30° block.
These three test blocks were used to measure adaptation rate
and the extent of interference between the learning of opposite
rotations as well as the time taken to initiate movements. This
allows a comparison of performance between the groups who
had experienced different temporal orders of learning during
the training phase. Adaptation rate is defined as the rate at
which reaching directions, relative to target directions, change
during learning; it can be expressed in absolute terms (e.g.,
degrees per trial) or in relative terms (e.g., as a proportion of
the initial reach direction error, per trial). Interference occurs
when performance on learning or relearning of a rotation is
degraded by the preceding presentation of another rotation; it
can manifest as an aftereffect of adaptation to the interfering
rotation (meaning that compensatory behavior suitable for the
interfering rotation continues during exposure to the new
rotation for which it is inappropriate) or as a reduction in
adaptation rate from what the rate would have been if the
interfering rotation had not been presented. A recent study
(Fernandez-Ruiz et al. 2011) suggests that slower initiation of
movements is a characteristic of cognitive processes that
quickly reduce directional error in rotation learning. We ex-
amine initiation times to look for a correlation with learning
rate suggestive of cognitive strategies. The “contextual inter-
ference” hypothesis predicts that the increased difficulty of
random training will lead to better test performance than for the
gradual group. However, it would be expected that each train-
ing task would be more completely learned if they were
presented in a gradually varying order. By comparing the
performance of the two groups, our study also investigates
whether structural learning effects are driven mainly by errors
(high in random) or driven by the sequence of visited adapta-
tion states (more broadly distributed in gradual).

METHODS

Experimental procedure. Twenty-seven subjects, naive to the pur-
pose of the experiment, participated after giving written informed
consent in accordance with the requirements of the local ethics
committee that approved the methods.

Subjects used their right hand to grasp the handle of a vBOT
manipulandum, a custom-built planar robotic interface that allows
movement in the horizontal plane and can measure the position of its
handle with a 1-kHz update rate. Using a mirror-monitor system,
subjects were prevented from seeing their own arm or the robot
handle, and we overlaid virtual visual feedback of the hand position (a
0.5-cm radius cursor, which was visible throughout all trials) and
targets into the plane of the movement. For full details of the robotic
and virtual reality setup, see Howard et al. (2009).

Each trial consisted of an out-and-back reaching movement that
started and ended at a starting circle (1 cm radius), ~30 cm in front
of the chest in the midline. To start a trial, subjects had to place the
hand cursor inside the starting circle for 0.5 s. A circular target
(0.5-cm radius) then appeared 8 cm from the starting circle in one of
eight directions spaced 45° apart. A cycle of movements consisted of
eight trials, in which each target was presented once in a pseudoran-
dom order. Subjects were instructed to make a fast movement to the
target and back in a straight line and not to try to correct for errors
within the movement. Subjects were required to start the movement
such that the cursor left the starting circle within 0.4 s of target
appearance; otherwise the trial was terminated and an error signaled.
If the target was hit (defined as any part of the cursor overlapping any
part of the target) within 0.2 s of the cursor leaving the start circle, the
subject was rewarded with the explosion of the target. Otherwise the
target changed color to indicate failure and remained visible for up to
a further 1.3 s, until the cursor had reentered the starting circle. The
next trial could then begin, subject to a minimum 1.5-s gap between
the appearance of consecutive targets. Depending on the condition and
trial, the cursor either veridically represented the hand position or
represented the hand position rotated around the starting circle by a
rotation angle. The rotation angle was always fixed within a cycle and
changes in the rotation angle only occurred while subjects were in the
starting circle, at the time of target appearance.

Subjects were assigned to four possible groups (Fig. 1 shows the
paradigm and rotation orders for the groups). All groups initially
performed five cycles with veridical feedback. They then performed a
training phase of 200 cycles in which the nature of any visuomotor
rotations depended on the group. All subjects then performed a
washout session of five cycles with veridical feedback to reestablish a
baseline. They were then exposed to a test phase consisting of seven
cycles of +30°, followed by seven cycles of —30°, and finally another
seven cycles of +30° rotations. That is they experienced three test
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Fig. 1. Sequences of rotation angles for the four experimental groups. All
groups experienced 5 cycles (with 8 trials per cycle) of veridical reaching,
followed by 200 cycles of training with rotations (random and gradual groups)
or more veridical reaching (null group), then a washout of 5 veridical cycles,
and then 7 cycles each of +30°, —30°, and +30° test rotations.

J Neurophysiol » doi:10.1152/jn.00635.2011 « www.jn.org

210z ‘gl Arenuga4 uo 610 ABojoisAyd-ul wouy papeojumoq



http://jn.physiology.org/

FACILITATION BY RANDOM AND GRADUAL TASK VARIATION 1113

blocks of a clockwise, anticlockwise, and then clockwise visuomotor
rotation.

The control group (7 subjects) experienced veridical feedback
during the entire training phase, meaning that the cursor tracked the
actual hand position. The other three groups experienced visuomotor
rotations during the training phase that changed every two cycles.
Across the training phase, these subjects experienced 100 rotation
angles evenly spaced between —60° and +60° (1.2° spacing). The
difference between the groups was the order in which these visuomo-
tor rotations were experienced. For each of the 10 subjects in the
random group, the 100 rotation angles were experienced in a different
pseudorandom order. For the gradual-down group (5 subjects), the
rotation angles were ordered so that the rotation gradually decreased
from 0° to —60° and then increased to +60° before decreasing to 0°
(that is changing in steps of 2.4° on both the up and down portions but
with the two parts 1.2° out of phase). The gradual-up group (5
subjects) experienced the same order but with the rotation direction
reversed.

Thus all experiments were 231 cycles, that is 1,848 trials long, and
took on average 56 min (range 50—77 min). A rest of =1 min was
enforced after the 105th cycle for all subjects, halfway through the
training phase.

Analysis. The position and velocity of the hand were recorded at
1,000 Hz. Trials in which the hand speed did not exceed 10 cm/s were
excluded from further analysis (0.48% of all trials; the maximum
number excluded for 1 subject was 25). For all remaining trials, we
calculated the adaptive state (a) that represents the visuomotor rota-
tion for which the reach would have been accurate. This is based on
the position of the hand when it had reached its maximum velocity in
the first 8 cm of the reach or 120 ms after movement onset (hand
speed first exceeding 10 cm/s), whichever occurred first. The 120-ms
limit ensured our measure of adaptive state did not include any visual
feedback corrections (Shabbott and Sainburg 2009; Saunders and
Knill 2005). The adaptive state was calculated as the angle between
the line joining the hand to the starting hand position and the line
joining the target to the starting cursor position. The reach error is
calculated by subtracting the adaptive state from the rotation angle.

We analyzed how learning at one target generalized to other targets
by calculating a spatial generalization measure, which was the abso-
lute reach error on the previous trial minus the absolute reach error on
the current trial. For this purpose, reach error on the current trial was
calculated using the rotation angle of the previous trial, since a change
of rotation angle cannot affect the first trial because our measure of
adaptive state only uses kinematic data from the part of the trial before
visually mediated corrections are possible. Individual measurements
were thresholded at =20° before averaging to reduce the effect of
outliers.

The movement initiation time on each trial was the time between
the target being displayed on the screen and the hand speed first
exceeding 3 cm/s.

Modeling. To perform statistical analysis of the noisy adaptive state
data from the test phase (that is the final 3 rotation blocks of +30°,
—30°, and +30°), we fit a nonmechanistic exponential-based model to
these time series and extracted measurements of learning from these
functions rather than from the raw data. The model was a piecewise
function with four pieces: a flat line segment for the last 15 trials of
the washout phase, and one exponential function for each test block
(see Fig. 6, top, for examples). Each exponential was of the form:
4a;,=a, + (d, — 4.,)e 7 where i is the trial number (starting at 0 on
the first trial of a block), 4, is the predicted adaptive state on trial i in
degrees, d, is the adaptive state on the first trial, d., is the asymptotic
adaptive state, and ¢ is the rate constant. As explained above, d,,
cannot be affected by the current rotation angle, and therefore the
function was constrained to be continuous, such that adjacent pieces
make the same prediction for the first trial of a test block. This
approach is superior to fitting an exponential to each block indepen-
dently of the surrounding trials, since the adaptive states on the few

trials immediately preceding a block provide considerable information
about the adaptive state at the start of the block. The constraints leave
seven free parameters, dy, dg, dg, 4., 4, G, and q;, where superscripts
denote test block number.

We used a robust fitting procedure so that our results would be less
sensitive to outliers, which can arise from subjects occasionally losing
concentration or adopting cognitive strategies. Thus we used an error
model in which each measured a; was assumed to be drawn with
probability o from a Gaussian distribution with mean d; and SD o (the
standard squared error model), or with probability 1 — « from a
uniform distribution around the circle (to represent more random
outlier responses).

Thus:

l—a)—

360

. ! (a; - a;)
plaild) = a——exp| = 5|+ (

The total likelihood, the product of p(a;la;) over all blocks and
trials, was maximized by simultaneously optimizing o, «, and the
seven parameters of the exponential-based function, by conjugate
gradient descent, separately for each subject. Although adaptive state
is a circular variable, the values it takes in this experiment are highly
concentrated in a narrow range around zero (compared to the extreme
of 180°) and therefore we can approximate the error measure as
Gaussian. Consistent with this view, in the fits o varied between 4.2°
and 9.6°, with median 6.6°, and « varied between 0.92 and 1, with
median 0.99.

From the fitted parameters, we calculated two measures of the
learning rate by assessing the drop in error over the first 10 trials of
each block. The first measures the absolute value of the drop,
sign[r](d@,, — d,), where r is the rotation angle of the block. The
second is the drop in error as proportion of the error at the start of the
block, (d,, — dy)/(r — d,). The purpose of dividing the 10-trial drop
by the initial error is to more fairly compare between cases where the
initial error is very different. A faster drop in absolute error is
expected for larger initial errors under popular linear state-space
models of adaptation (Thoroughman and Shadmehr 2000; Donchin et
al. 2003; Smith et al. 2006; Huang et al. 2011). The choice of 10 trials
was arbitrary; we also calculated absolute and proportional drops over
the first 5, 15, or 20 trials and found that none of the conclusions of
the study were affected by changing the number of trials used.

We also implemented the dual-process state-space model of adap-
tation proposed by Smith et al. (2006). We use similar nomenclature
to Smith et al. (2006) to define the model:

xp(i+1) = Ap-xy(i) + By e(i)
x,(i + 1) = A;-x,(i) + B, e(i)
B> By, A > Ap x(i) = x,(i) + x(i)

where i is the trial number, x represents the adaptive state, x, and x;
represent the contributions of the fast and slow processes respectively,
A is the “retention factor,” B is the “learning rate,” and e is the reach
error. Note that a large retention factor means slow forgetting.

As the parameters of the model could change during the training
phase we fit the model by running it on the full length of the
experiment but only optimizing to maximize the likelihood for the test
phase, by which time the parameters are likely to have stabilized. The
effects on x,and x, of any errors in the parameters for the initial part
of training are likely to have been washed out by the end of the
training. Consistent with this is that only starting the simulation from
the middle of training gave very similar results and did not affect the
significant differences in parameters across groups reported in
RESULTS.

We fit each subject’s data separately and used the same robust error
model described above, with parameters fixed at the median values
found during fitting of the exponential-based functions (o« = 0.99;
o = 6.6°). The fit was implemented in MATLAB by the fminsearch
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function with the four parameters (learning and retention factors for
the slow and fast processes) each curtailed such that they lay between
zero and one.

RESULTS

Twenty-seven naive subjects participated in a center-out
discrete reaching task with eight targets evenly spread around
the circle. All subjects started with reaching under veridical
feedback conditions. In a subsequent “training” phase, three
groups were given experience of a fixed set of 100 visuomotor
rotations (each for a 16-trial block) spaced evenly from —60°
(anticlockwise) to +60°, while a further control group was
given experience of veridical reaching (Fig. 1 shows the
rotation orders for the groups). One of the rotation-trained
groups (the random group) experienced the rotations in random
order, while for the other two groups (gradual) the angle
gradually increased from 0° to one extreme (*+60°), then
gradually to the other extreme (+60°), and then back to 0°.
These two groups experienced the rotations in opposite order.
All four groups were finally tested, after a further veridical-
feedback washout, in a standard A—B—A paradigm, i.e.,
+30° rotations followed by —30° rotations, and then +30°
rotations again.

Figure 2 shows outward cursor trajectories from one typical
subject of each group. Figure 2, left, shows the accurate
reaches in the final cycle of the veridical-feedback washout.
Figure 2, middle, shows trajectories from the first cycle of the

Late rotation
+30°

Late washout  Early rotation

0° +30°

Random

Gradual-down

Gradual-up

Control

Fig. 2. Cursor trajectories under veridical and rotated reaching. For the median
subject of each group (selected on the basis of the reduction in reach error from
the first to the last cycle of the first test block), outward reach trajectories from
3 cycles of 8 trials are shown. /) Late washout cycle is the last cycle before the
test rotations. 2) Early rotation cycle is the first cycle of the first test (+30°)
block. 3) Late rotation cycle is the last cycle of the first test block.

first test block; the reaches are sent off-target by the clockwise
+30° rotation. Figure 2, right, shows the more accurate
reaches in the last cycle of this block, after subjects have
learned to compensate for the rotation (particularly subjects
from the random and gradual groups).

A subject’s hand trajectory on each trial was characterized
with a scalar “adaptive state” representing the visuomotor
rotation for which the reach would have been accurate. The
difference between the adaptive state and the actual rotation
angle gives the reach error. Figure 3, /eft, shows the adaptive
state for example subjects during random and gradual training.
This shows that subjects do not fully adapt to the perturbations
when they are ordered randomly but adapt more fully when
they are ordered gradually, although gradual-trained subjects
also tend to under-adapt to the largest rotations. Figure 3,
middle, shows the distribution across trials of adaptive states
for all subjects of a group. To calculate the range of adaptive
states experienced before the test phase, we dealt with outliers
by taking the circular mean within each cycle. The range of
states was on average 13.3° for the control group, 102.8° for
the gradual group (in which the 2 gradual groups are com-
bined) and 51.7° for the random group. All three values are
significantly different from each other at the P < 0.001 level,
and the 95% confidence limits on the difference between the
gradual and random groups are 40.0 to 62.2°. This shows that
the gradual group tracked the perturbations, adapting more
fully than the random group. Figure 3, right, shows the pro-
portion of targets hit, as a function of rotation angle. Across all
rotations, the hit rate was 0.22 for the random group and 0.61
for the (combined) gradual group (difference significant at P =
0.0002, Wilcoxon rank sum test). To examine experience at
hitting targets under rotations similar to the test rotations, we
took the mean hit rate for the eight rotation angles closest to
+30° (from 26.1° to 34.5°) and the eight closest to —30°. The
means were 0.10 for the random group and 0.66 for the
(combined) gradual group (P = 0.0002, Wilcoxon rank sum
test). A clear tendency exists for hit rates to be greater for
rotations in the direction experienced first during gradual
training; this may be understood simply as being due to
anterograde interference exerted by rotation in one direction on
rotation in the opposite direction (Krakauer et al. 1999; Bock et
al. 2001; Wigmore et al. 2002; Miall et al. 2004; Imamizu et al.
2007). To measure the smoothness with which the adaptive
states change across blocks in the training phase, we calculated
the mean of the absolute difference between adaptive states in
the last cycle of a block and the last cycle of the subsequent
block, in the part of the experiment before the test phase. The
result was an average change of 1.79° for the control group,
3.08° for the (combined) gradual group, and 11.99° for the
random group. All three values are significantly different from
each other at the P < 0.001 level. Thus during training the
gradual-trained subjects experience on average twice the range
of adaptive states as the random-trained subjects but experi-
enced an adaptive state that changed much more slowly.

Figure 4, A-D, shows that the random group experience
much larger errors (median magnitude: 20.9°) than the com-
bined gradual group (median: 6.4°) and the control group
(median: 3.0°). Figure 4F shows, for each group, the change in
error magnitude across the 16 trials of a block, averaged across
the 100 blocks. The fall in error from the first to the last trial
of a block is significant for the random group (#-test: P = 6 X
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107>, 95% confidence limits: 8.1° to 15.8°) but not for any
other group. Therefore, only the random group, who generally
have a large error at the start of a block, shows notable
improvement over the course of the 16 trials with a new
rotation. Figure 4F shows the change in error magnitude across
the training phase, averaged across all 16 trials of each block
and within groups of 10 blocks. The error on the last 20 blocks
is significantly lower than for the first 20 blocks in the random
group (P = 0.0002, 95% confidence limits on the difference:
5.0° to 10.7°). The gradual group shows peaks in error when
the rotation angle is large (marked with asterisks).
Adaptation to a visuomotor rotation experienced when
reaching to one target in a center-out continuous feedback task
only leads to limited adaptation for reaches to other targets,
obeying an approximately Gaussian generalization function
with o =~ 30° (Krakauer et al. 2000). An increase in general-
ization across targets might be one mechanism by which
training on rotations leads to faster adaptation to later rotations
in a multitarget paradigm. Figure 5 shows generalization func-
tions that are the reduction in absolute reach error from one
trial to the next as a function of the difference in target angles
between the two trials. Figure 5, A and B, shows generalization
across the whole training phase and the whole test phase. All
functions show narrow generalization, with the height of the
function varying across groups depending on the size of the
errors experienced or the general speed of adaptation. Figure 5,
C and D, shows that the width of generalization does not
increase from the first half of the training phase (solid lines) to

the second half (dashed lines) in either the random group or the
(combined) gradual group (no data points significantly differ-
ent at the P < 0.01 level between early and late training).

Characterizing adaptation with exponential-based functions.
To measure the rate of adaptation during the first few trials of
exposure to a test rotation in a way robust to the noise on the
adaptive state measures, the time courses of adaptation were fit
with exponential-based functions. Figure 6, fop, shows this fit
for a typical subject from each group. The exponential-based
fits are constrained so that the whole function is continuous
across the test blocks (see METHODS). Figure 6, middle, shows
the exponential-based functions fit to all subjects of the four
groups. The random and gradual groups show considerable
within-group variation, with some subjects adapting rapidly
and some very slowly, whereas all subjects of the control group
adapt relatively slowly and show considerable interference
between the learning of the opposite rotations, with the adap-
tive state during the middle —30° block never getting far below
0°. Means across subjects, for each of the four groups, are
shown in the bottom graph of Fig. 6.

Variations in adaptation across groups. Our primary mea-
sure of the rate of adaptation is the drop in error over the first
ten trials, as a proportion of the error on the first trial. This
measure avoids confounding the rate of adaptation to the
current rotation with the aftereffect of the previously learned
rotation and was calculated from the exponential-based func-
tions shown in the middle row of Fig. 6. Figure 7, left, shows,
for each subject group, the proportional drop for each of the
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Fig. 4. Reach errors during the training phase. A—D: distribution of errors
(adaptive state minus rotation angle) across the training phase, across all
subjects in an experimental group. E: time course of error (means * 1 SE
across subjects) over the 16 trials of a training block, averaged across all 100
blocks, for each of the 4 groups (groups colored as in A-D). F: time course of
error over the whole training phase, averaged over all 16 trials within a block
and over groups of 10 blocks. *Blocks of maximal (+60°) rotation for the
gradual groups.

three test blocks (means *= SE across subjects), and Fig. 7,
right, shows the mean across blocks for each subject group.
The mean drop for the random group is significantly greater
than for the control group (P = 0.004 on z-test, 95% confidence
limits on the difference: 0.10 to 0.43), and the difference is
significant at the P < 0.05 level for each block. The mean drop
for the (combined) gradual group is significantly greater than
for the control group (P = 0.003, 95% confidence limits: 0.12
to 0.49), and the difference is significant at the P < 0.05 level
for each block. Comparing the drop for the gradual and random
groups shows there is no significant difference on any block or
on the across-block average.

Examining the absolute 10-trial drop gives the same quali-
tative differences between groups. The average drop for the
random group (19.4°) is significantly greater (P = 0.004) than
for the control group (7.6°) and the difference is significant at
the P < 0.05 level for each block. The same is true when
comparing the gradual group (mean drop 22.9°) with the

control group. Again, the drop is never significantly different
between the random and gradual groups. To examine the
completeness of adaptation, we measured how far a subject’s
average adaptive state (using the circular mean) fell short of the
rotation angle in the last two cycles of a test block. We found
this shortfall, averaged across all three blocks, to be less for the
random (P = 0.012) and combined gradual (P = 0.0005)
groups than for the control group. It tends to be less for the
gradual group than for the random group, albeit not signifi-
cantly (mean difference: 3.6°, P = 0:15). The same results are
found if the final adaptive state is instead taken as that pre-
dicted for the last trial of the block by the exponential-based
function fits.

Variations in adaptation across test blocks. We examined
the rate of adaptation to the three test blocks to assess inter-
ference between the learning of the +30° and —30° rotations.
Interference might be expected to reduce the rate on the —30°
block compared with the first +30° block, but we find that the
10-trial drop in error is greater on the —30° block for both the
control and random and (combined) gradual groups (P < 0.05
for each). When the 10-trial drop is normalized by the initial
error the difference is not significant for any group, although
the trend in all groups is for faster adaptation in the —30°
block. This suggests that any interference of the first +30°
block on adaptation to the —30° rotation consists only of an
aftereffect (higher initial error).

Interference of the —30° block on learning of the +30°
rotation could affect the second +30° block both through an
aftereffect and through the prevention of savings, meaning a
faster learning rate on the second exposure to the +30°
rotation. Our paradigm does not reveal how much savings
would have been seen if the —30° block had been instead a
washout or break, but it can be shown that the rate of adapta-
tion on the second +30° block is at least not less than that on
the first. The absolute 10-trial drop is greater on the last block
for all three groups (P < 0.05), and as a proportion of the initial
error it is greater for the random group (P < 0.05) and also
tends to be greater for the gradual and control groups (albeit
not significantly).

Fitting test adaptation using state-space models. Smith et al.
(2006) proposed a model of visuomotor adaptation composed
of two adaptive processes; one that learned fast but with poor
retention, and one that learned slowly but with good retention.
This model cannot capture meta-learning effects and is unable
to account for the different rates seen across our groups of
subjects under the assumption that the groups have similar and
fixed parameter settings for the learning rates and retention
factors. Here we ask what parameters of the two-process model
could be altered by meta-learning that may occur during
random and gradual training.

We fit the model to the test phase for each subject separately
(although the model is run on the whole experiment, so that the
processes are appropriately adapted before the test phase be-
gins). The model output, averaged across subjects, is shown in
the top row of Fig. 8, and the means and ranges of parameters
are shown in Table 1. The model is able to closely approximate
the adaptive state for all subjects, and Fig. 8, bottom, shows (in
the style of Fig. 7) that the drop in error over the first 10 trials
of each test block shows a similar trend in the model fits to that
measured using the exponential-based fits.
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Examining the slow process parameters shows that neither
the retention factor nor the learning rate is significantly differ-
ent among the random, (combined) gradual, and control groups
(Kruskal-Wallis test, P = 0.28 and P = 0.53, respectively).
Examining the fast process rates shows that the retention factor
varies significantly between groups (P = 0.03), and post hoc

Random Gradual-down Gradual-up

tests reveal the gradual group’s retention factor is significantly
higher than for the control group. In addition, the fast process
learning rate also varies significantly between the groups (P =
0.01), and post hoc tests reveal the random and gradual group
rates are both significantly higher than for the control group.
When the two control groups are considered separately, there is
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Fig. 7. Drop in reach error over the first 10 trials of test blocks, as a proportion
of the initial error. This measure is computed from the exponential-based
functions fit to individual subjects’ adaptive state measures. Error bars show 1
SE of the mean across subjects. The 4 leftmost groups of bars show the drop
in each of the 3 test blocks. Rightmost group shows the mean drop across test
blocks for each of the 4 subject groups.

very little difference between them for any parameter (A,
means: 0.86 for gradual-down group and 0.93 for gradual-up
group; A;: 1.00 and 1.00; B, : 0.098 and 0.094; and B,: 0.016
and 0.020).

Variations in initiation time. Figure 9A shows, for each
group, the change in movement initiation time across the 16
trials of a training block, averaged across the 100 blocks.
Although the average error for the random group falls consid-
erably from the first to the last trial of a block (P = 6 X 1073,
Fig. 4F), there is no such change in initiation time (P = 0.38).
Figure 9B shows the change in initiation time across the
training phase, averaged across all 16 trials of each block and
within groups of 10 blocks. No group shows a significant
change in initiation time from the first to the last 10 blocks,
although the gradual groups tend to show increases in initiation

Random

- W
o O

Adaptive
state (deg)

|
W
o

time that parallel the increases in error that occur as the £60°
extremes of rotation angle are reached. Figure 9C shows
initiation time during the washout and test blocks (separated by
vertical black lines). Mean initiation time during the washout
shows no significant differences across groups. In the first three
cycles of each test block, initiation times for the control group
are on average raised from that in the washout (mean increase
of 21 ms, P = 0.03), and the same is true for the gradual group
(mean increase of 31 ms, P = 0.01), while the random group
shows no increase (P > 0.15 for each block). This initiation
time increment is also significantly greater across blocks for
both the gradual and control group compared with the random
group (P < 0.05 in either case), but there is no significant
difference between the gradual and control groups (P = 0.35).
We found no significant correlation across subjects, within any
group, between this measure and the proportional 10-trial drop
in error.

DISCUSSION

In our study, we found that subjects trained on visuomotor
rotations spaced between —60° and +60° adapt faster to
subsequent +30° and —30° rotations than control subjects who
are only trained with veridical reaching. This facilitation was
seen regardless of whether the training rotations are experi-
enced in random order or in gradual order where the rotation
angle changes only slowly. The random and gradual groups
learn the test rotations at similar rates, suggesting that both
types of experience are effective at enhancing the mechanisms
involved in adaptation to visuomotor rotations. However, the
random group initiate reaches more rapidly than the gradual
group when exposed to the test rotations. Unlike the gradual
and control group, they show no significant increase in initia-
tion time during the test phase. This shows that random and
gradual exposures do not affect the visuomotor system identi-
cally. Furthermore, by fitting a two rate state-space model we

Control
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Fig. 8. Fits of the dual-process model. Top: adaptive states and model fits to the test phase, for each of the four subject groups. Model was fit to the test phase
for all subjects individually and predictions averaged across subjects. Blue dots are adaptive state measures; blue curves represent the slow process state; green
curves represent the fast process state; and red curves represent the predicted motor output, which is the combination of the 2 states. Bottom: drop in error over
the first 10 trials of each block (as a proportion of the initial error) predicted by the model fits, plotted as for Fig. 7.
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Table 1. Parameters of dual-process model fits
As A, B, B,
Random group 0.77 = 0.09 1.00 = 0.00 0.098 = 0.019 0.021 = 0.005
Gradual group 0.89 = 0.05 1.00 = 0.00 0.096 = 0.024 0.018 = 0.005
Control group 0.74 = 0.06 1.00 = 0.00 0.034 = 0.007 0.012 = 0.002

Values are means * SE across subjects with parameters averaged across fits to each individual subject of a group. Parameters for the dual-process model of

Smith et al. (2006) fit to the test phase adaptive state data.

found that there were significant differences between the learn-
ing rates and retention factors of the fast process that could
account for the differences in the performance of the groups in
the test phase. That is the learning rate was greater in the
gradual and random groups compared with the control and the
retention factor was significantly larger in the gradual group.
This suggests that facilitation of learning can be seen after both
gradual and random task variation and that these may change
parameters of the fast process of the two rate state-space
model.

Contextual interference. In our study, we compared groups
that underwent randomly and gradually changing tasks,
whereas previous studies compared groups that underwent
blocked and random tasks during training and investigated the
subsequent effect on retention and transfer (e.g., Shea and
Morgan 1979). The superior retention and transfer of the
random group in such studies have often been attributed to
“contextual interference” (Battig 1966, 1972, 1979). The hy-
pothesis of contextual interference suggests that increased
difficulty experienced during random practice leads to the
activation of multiple processing mechanisms that allow for
improved performance on later testing. However, if we take the
reach error as the measure of difficulty, our findings suggest
that task difficulty measured by large errors is not necessary for
enhancing adaptivity. That is although the control, gradual, and
random groups had average errors of 3.0° 6.3°, and 20.9°,
respectively, during the training phase, the gradual and random
group showed similar facilitation on testing despite the large
difference in errors previously experienced. Indeed, a recent
study (Abe et al. 2011) showed that learning under conditions
of reward leads to better long-term retention than neutral
conditions or punishment; since the gradual group experiences

A B

more implicit reward than the random group during training, in
the form of target hits, one might expect them to perform better
on the test rotations (Pekny et al. 2011; Izawa and Shadmehr
2011).

Similarly, our results suggest that rapid changes in task
parameters, or in the adaptive state of the subject, are not
necessary conditions for facilitation of learning, since the
rotation angle and adaptive state change much slower during
gradual training than during random training, and yet both
groups perform similarly in the test phase. Indeed, rapid
changes in task parameters might reduce later adaptation rates;
several studies have shown that adaptation to a given error is
reduced in a randomly changing environment vs. a slowly
changing environment (Cheng and Sabes 2007; Donchin et al.
2003; Smeets et al. 2006), perhaps due to reduced retention of
learning in a rapidly changing environment (Huang and Shad-
mehr 2009). This may explain the nonsignificant trend in our
results for gradual-trained subjects to learn the test rotations
more completely than random-trained subjects.

Another notable difference between gradual and random
training is the experienced range of adaptive states, which
during gradual training is roughly twice that during random
training, since gradual subjects adapt more fully to the training
rotations. This may lead to more thorough learning of the
structure or to training of a wider variety of internal models
(Wolpert and Kawato 1998; Haruno et al. 2001) leading to
faster switching between these models during the test phase
and therefore to faster adaptation. It may be that this advantage
of gradual training over random training compensates for the
absence of other stimuli to the adaptive mechanisms, such as
large errors, rapid changes in task parameters, and rapid
changes in adaptive state, such that the net difference in

C

0° +30° -30° +30°
0.34 0.34 0.34 Random
Gradual-down

- Gradual-up
» 032 0.32 0.32 -
)
£
=
- 03 0.3 0.3
i)
3 1 |
© ~ \/V\/"
O 028 0.28 0.28
x /

0.26 0.26 0.26

5 10 15 0O 20 40 60 80 100 211 218 225

Trial of training block Training block

Cycle

Fig. 9. Initiation time for reaches. A: time course of initiation time (means * 1 SE across subjects) over the 16 trials of a training block, averaged across all 100
blocks, for each of the four groups. Initiation times are measured from target appearance until the time the hand speed first exceeds 3 cm/s. B: time course of
initiation time over the whole training phase, averaged over all 16 trials within a block and over groups of 10 blocks. C: time course of initiation time over the

washout and test phases. Black lines represent the onset of test rotations.
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adaptation rate during the test phase between the two subject
groups is small. Thus it is possible that several of the features
of training discussed here lead to considerable enhancement of
adaptation, despite the lack of difference between the learning
rates of the two groups.

Structural learning. Braun et al. (2009b) showed that sub-
jects trained on a random sequence of visuomotor rotations
adapted faster to test rotations and showed less interference
between opposite rotations than controls trained with veridical
reaching. Their experiment also demonstrated that some of the
adaptation benefit of random rotation training was specific for
rotations. This demonstrates that the increase in adaptation rate
and reduction in interference does not arise purely from a
generic increase in adaptability (e.g., Seidler 2004). This leaves
open two possibilities: /) that random rotation training caused
subjects to learn the structure of rotations so that their senso-
rimotor system could rapidly move to any point along that
structure, or 2) that rotation training induced the learning of
two or more internal models (Wolpert and Kawato 1998; Osu
et al. 2004; Lee and Schweighofer 2009), between which
subjects were able to switch on the basis of a few trials of
contextual evidence. To distinguish between these possibili-
ties, Braun et al. (2009b) examined subjects who were trained
on both the test rotations intermingled with random linear
transformations that were not restricted to rotations. These
subjects did not demonstrate improved performance on the test
rotations even though they had experienced a large number of
the test rotations during training. These results argue in favor
of hypothesis I of structural learning, since under hypothesis 2
subjects would be expected to learn internal models suitable for
these test rotations even though the random linear transforma-
tions did not correspond to a structure. However, despite this
result it is still possible that ~ypothesis 2 accounts in part for
the superior performance of the trained subjects compared
with the control subjects; that is, the trained subjects adapt faster
to the —30° and +30° rotations because they have experienced
them before. However, the main focus of the current study is to
investigate the role of temporal ordering during learning rather
than to test between these two hypotheses.

Although the gradual and random groups show similar
facilitation of learning as assessed by reach direction, we found
important differences between the initiation times of these
groups. The initiation time of the random group remained low
during the test phase unlike the control or gradual groups
whose initiation times increased. A recent study (Fernandez-
Ruiz et al. 2011) showed that when subjects’ initiation times
are unconstrained by the task there is a strong correlation
between initiation time and reduction in directional movement
error during visuomotor learning. However, when subjects
were required to initiate movement within 350 ms of target
appearance, they showed only very gradual improvements in
error and very little variation in reaction times. In our study, we
also found no significant correlation between reach error and
reaction time, as our subjects were required to initiate move-
ment within 400 ms. Fernandez-Ruiz et al. (2011) have related
larger initiation times to more cognitive strategies that possibly
involve spatial working memory (mental rotation). Therefore,
despite the similarity in spatial performance, there is an advan-
tage to random training in terms of initiation time and this
would suggest that the random group might be employing a
less cognitive strategy during the test phase. Random-trained

subjects might be expected to make greater use of cognitive
strategies, since these subjects were aware of perturbations
throughout training whereas gradual-trained subjects often re-
ported being unaware until the latter half of the training phase.
However, the faster initiation times in the random group
compared with the gradual groups during testing suggest that
implicit adaptation mechanisms eventually dominate such cog-
nitive strategies. Whether the reduction in initiation time might
also be a signature of structural learning remains to be
explored.

To investigate whether training or its temporal order had any
effect on spatial generalization, we examined the generaliza-
tion function across different target directions for the different
groups and for early and late training (Fig. 5). However, we
found no changes in the width of the generalization for the
random and gradual groups over the course of training. This
suggests that the possible underlying processes of structural
learning do not affect spatial generalization.

Task setup and error measures. There are notable method-
ological differences between our current study and Braun et al.
(2009b). First, the present study used discrete movements with
short initiation time (0.4 s), similarly to a number of other
studies (Miall et al. 2004; Sing et al. 2009), whereas Braun et
al. (2009b) imposed only a 2-s limit for reaching the target
(although subjects were asked to move swiftly). The short
initiation time in the present study, as well as the use of eight
randomized targets common to both studies, should reduce the
possibility of subjects making use of cognitive strategies
(Weiner et al. 1983; Bedford 1993; Redding and Wallace 2002,
2006a,b; Ghilardi et al. 2009; Fernandez-Ruiz et al. 2011).

Second, we used 30° test rotations rather than the 60° used
by Braun et al. (2009b), and a —60° to +60° rather than —90°
to +90° range of exposure rotations. Since large rotations
(especially 90° and larger) may induce the use of more cogni-
tive strategies (Imamizu et al. 1995; Abeele and Bock 2001;
Miall et al. 2004), it is useful to demonstrate here that the
apparent structural learning effect is replicated under condi-
tions where cognitive strategies are less likely to be used.

Third, our method of characterizing the time course of
adaptation with exponential functions allows estimates of the
magnitude of the improvement in learning rate brought about
by prior exposure to rotations. Whereas the mean fall in error
over the first 10 trials of the 3 test blocks is just 7.6° for the
control group, this measure for the random exposure group is
19.5° (95% confidence limits on the difference: 4.4° to 19.3°),
showing an effect of considerable magnitude. Direct compar-
ison of trial 11 with trial 1 would provide much more noisy
estimates of this learning measure.

Zarahn et al. (2008) also used exponential functions to
empirically compare adaptation across conditions. This study
compared rate constants (¢ in our parameterization, see METH-
ops) rather than trial-by-trial changes in performance. The
10-trial drop in error is closer to such a measure and is more
robust to measurement noise than g, which varied in our fits
over a factor of 9,000. Since most of the adaptation in a block
takes place over just 10-20 trials, the noisy data are often
consistent with a wide variety of functions that yield similar
values of the 10-trial drop but have very different values of q.
Further, Zarahn et al. (2008) only used data from the current
test block when fitting exponential functions, although these
blocks followed straight on from previous blocks without
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breaks, making it valid to fix the starting adaptation level of the
exponential at the average of the last few trials of the previous
block, as in the present study. The starting level of the expo-
nential is particularly poorly constrained by the data in the
current block, so our approach reduces the sampling error on
the estimate of this parameter and therefore on estimates of the
other parameters.

Our approach of analyzing the speed of adaptation (Sing and
Smith 2010; Krakauer 2009; Zarahn et al. 2008; Smith et al.
2006; Kojima et al. 2004; Miall et al. 2004; Bock et al. 2001;
Abeele and Bock 2001), rather than averaging errors over the
first few or all the trials of exposure to a task (Cunningham
1989; Brashers-Krug et al. 1996; Shadmehr and Brashers-Krug
1997; Imamizu et al. 2007; Braun et al. 2009b), allows us to
separate the aftereffect of previous learning from the rate of
adaptation. We find that in all subject groups the rate of
adaptation to the —30° test rotation is at least as great as that
to the preceding +30° rotation, and the rate of adaptation on
the second +30° block is at least as great as that on the first
+30° block. These results show that anterograde interference
between the opposing rotations consists only of an aftereffect
rather than a reduction in learning rate. It is possible that
retrograde interference of the —30° rotation on the memory of
the +30° rotation prevented savings that would have otherwise
increased the rate of learning on the second +30° block, but
our experiment did not test this.

State-space models of facilitation. Zarahn et al. (2008)
showed that linear state-space models of adaptation (e.g.,
Smith et al. 2006) cannot explain processes of meta-learning
and argued that variable-rate adaptive processes are necessary
to account for such phenomena. More specifically, Huang and
Shadmehr (2009) showed that gradual introduction of a dy-
namic perturbation increased the retention factor of adaptive
processes later in the experiment and that rapid introduction of
a perturbation reduced the retention factor. Similarly, we show
that parameters of the Smith et al. (2006) model during the test
phase are altered by previous experience of visuomotor rota-
tions. With fits to individual subjects, we find that the learning
rate of the fast process is increased considerably by both
random and gradual learning. Such a rate change could be
driven by a number of meta-learning processes, for example,
by a generic increase in adaptation rate in response to error
magnitude or variability or mapping uncertainty (e.g., Burge et
al. 2008), or structural learning (e.g., Braun et al. 2009b). We
also found the retention parameter of the fast process to be
increased by gradual learning but not random learning. This is
in accordance with the aforementioned finding of Huang and
Shadmehr (2009); both studies suggest that properties of adap-
tive processes are adapted within minutes to the properties of
the environment, with learning in rapidly changing environ-
ments being rapidly forgotten and learning in slowly changing
environments being retained over longer timescales. However,
it should be remembered that the dual-rate mechanism of the
Smith et al. (2006) model does not necessarily reflect the actual
mechanism of meta-learning in our study; as discussed above,
it may be that faster adaptation to test rotations is actually due
to switching between multiple internal models that were learned
during the training phase. In the future, it will be interesting to
develop variable rate models that can capture meta-learning pro-
cesses as reported in our study and to fit them to trial-by-trial
movement data.

In conclusion, we found facilitation of visuomotor rotation
learning after subjects underwent training with either randomly
or gradually varying rotations. Additionally, subjects that ex-
perienced random training showed a significantly lower move-
ment initiation time compared with subjects who experienced
gradual or no training. When fitting a state-space model with a
fast and a slow learning process to our data, we found that
random and gradual training had adapted parameters of the fast
learning module. These differences between subject groups
suggest that learning rates are adapted through experience as
part of meta-learning processes that can depend on previous
errors, task variability, mapping uncertainty, and structural
similarity between tasks. While the way in which errors lead to
changes in the internal state are well understood, future studies
will need to understand how different features of experience
change the learning rates and retention parameters of the
processes underlying learning.
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