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Abstract—Based on theoretical and computational studies it has been suggested that the central nervous system
(CNS) internally simulates the behaviour of the motor system in planning, control and learning. Such an internal
“forward”” model is a representation of the motor system that uses the current state of the motor system and motor
command to predict the next state. We will outline the uses of such internal models for solving several fundamental
computational problems in motor control and then review the evidence for their existence and use by the CNS. Finally
we speculate how the location of an internal model within the CNS may be identified. Copyright © 1996 Elsevier

Science Ltd.
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1. BACKGROUND

The topic for this section of the special issue of Neural
Networks is whether the CNS makes use of internal
models. Although shown to be of potential use in
motor control, and finding applications in fields such
as robotics, neural network and adaptive control,
until recently there had been little evidence for
control strategies used in man that are based on
internal models. There is now growing support
amongst researchers in human motor control that
model-based strategies are used in the control of
multi-joint movements. The purpose of this paper is
therefore to review the concept and the uses of
internal models within physiological motor systems.
We will then review the recent lines of evidence that
most strongly argue for the presence of these models
in man. In general we will limit our discussion to
forward models, and restrict our evidence to that
covering voluntary control of the human arm and
hand.

1.1. Internal Models of Motor Systems

Over recent years the concept of an internal model, a
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system which mimics the behaviour of a natural
process, has emerged as an important theoretical
concept in motor control (Kawato et al., 1987,
Jordan, 1995). Internal models can be classified into
three conceptually distinct groups.

The first type is a causal representation of the
motor apparatus, sometimes known as a forward
model (Jordan & Rumelhart, 1992). Such a model
would aim to mimic or represent the normal
behaviour of the motor system in response to
outgoing motor commands. For example, a forward
model of the arm’s dynamics might have as input the
current state (e.g., joint angles and velocities) and
motor commands being issued by a controller, and
produce as output an estimate of the new state. This
model therefore captures the state transition beha-
viour of the arm in response to the motor outflow. By
state, we refer to the current position and velocity of
the motor apparatus, or in more general terms, to a
set of parameters which when taken together with
knowledge of the inputs and dynamics of the system
determine its future behaviour. However, the state
may or may not be accurately known by the
controller (or the internal model), and so one needs
to separate the state variables from the sensed
variables. These can differ widely in physiological
systems: the position and velocity of the human arm
are sensed principally by muscle spindles, which
signal changes in muscle length rather than in joint
angles. So, one can also propose a forward sensory
output model of the arm that might predict the
sensory signals (from sensory ending in the muscles,
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FIGURE 1. Forward dynamic models and forward output modeis
can be cascaded to generate an estimate of the sensory
consequences of motor commands.

joints and skin) which would be consequent on a
particular state. Such a sensory output model would
therefore have as input the current state and as
output the predicted sensory feedback. By cascading
a forward dynamics and forward sensory output
model, an estimate of the sensory consequences of a
motor command can be achieved (Figure 1). In the
kinematic domain the forward model is taken as the
mapping between joint co-ordinates and the endpoint
co-ordinates of the hand. As forward models are
causal they are well-defined functions in that the
mappings are either one-to-one or many-to-one. Thus
although the same hand endpoint may be reached
with many different arm configurations (because of
the redundant degrees of freedom of the primate
arm), there is no ambiguity about the hand’s location
given any particular arm configuration.

The second group of internal models are concep-
tually similar to the forward model of the motor
system, but instead model the behaviour of the
external environment. Such a cognitive model would
encapsulate knowledge of the physical properties of
the environment, and predict the behaviour of the
external world. We understand the normal behaviour
of the physical world, and for example, can predict
accurately the trajectory of a ball we wish to catch
(Lacquaniti & Maioli, 1989); we are shocked when
the physical world breaks the normal behavioural
patterns (e.g., Spelke et al., 1992). This knowledge is
based on our forward models of the cause and effect.
Although these models are likely to be useful for
motor planning (e¢.g., Mclntyre et al., 1995), we will
discuss them no further in this review.

The third group of models are known as inverse
models (Atkeson, 1989), which invert the causal flow
of the motor system. These models therefore also
encapsulate knowledge about the behaviour of the
motor system, but generate from inputs about its
state and state transitions an output representing the
causal events that produced that state. For example,
an inverse dynamic model of the arm would estimate
the motor command that caused a particular move-
ment. The input might therefore be the current and
the desired state of the arm; the output would be the
motor command which would cause the arm to shift
from the current state to this desired state. An inverse
sensory output model would predict the changes in
state that corresponded to a change in sensory inflow.
In the kinematic domain the inverse kinematic model
again inverts the forward kinematic model to produce
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a set of joint angles which achieve a particular hand
position. However, as a forward model may have a
many-to-one mapping, there is no guarantee that a
unique inverse will exist, because the inverse may be a
one-to-many mapping. This can be seen for the
human arm in which the inverse mapping between
hand position and joint angles is non-unique (Craig,
1986).

These models have been proposed by engineers,
and have been demonstrated to be highly advanta-
geous in a range of motor control situations (Craig,
1986, Lacquaniti et al., 1992). We will discuss
forward models in more detail from now on, as the
discussion of and evidence for inverse models would
require a separate paper (Lacquaniti et al, 1992;
Cruse & Steinkuehler, 1993; Wada & Kawato, 1993;
Shadmehr & Mussa-Ivaldi, 1994; Imamizu et al.,
1995). However, it is worth describing in some detail
how these models might be employed in a physiolo-
gical context, before considering evidence that points
to their existence and their use. As mentioned above,
we are limiting ourselves mainly to discussion of the
voluntary control of the human arm.

2. POTENTIAL USES OF FORWARD MODELS

2.1. Cancelling Sensory Reafference

A forward model is a key ingredient in a system that
uses motor outflow (also called efference copy:
Sperry, 1950; Festinger & Cannon, 1965; Kelso,
1977) to anticipate and cancel the sensory effects of
movement. Sensory signals arise in the periphery
from two causes: those as a result of environmental
influences on the body, and those resulting from self-
generated movement. The first are termed afference,
while the second type of sensory signals are known as
reafference as they are the sensory consequences of
movement (Figure 2). Although the afferent and
reafferent signals have distinct causes they are carried
by the same sensory channels. From a behavioural
viewpoint it may be necessary to distinguish between
signals from the two causes especially to monitor
changes in the external world separate from those
resulting from self-movement.

As an example consider the problem of moving the
hand over an object on a table and estimating
without the aid of vision whether the object is itself
moving. The slip velocity (the velocity of the object
across the palm of the hand) is the sum of the velocity
of the hand and the velocity of the object in the
outside world. So to decide if the object is moving,
the component of its slip due to self-generated arm
movement must first be removed. However, an
efference copy cannot itself provide this informa-
tion, as it is a motor signal predictive of muscle
activation, rather than of sensory input. By generat-



Forward Models for Motor Control

1267

Estimated sensory feedback
(corollory discharge)

Sensory
discrepency

Sensory feedback
(reafference)

State Forward Forward
Dynamic ——={ Output
Model Model
Efference
Copy
New
Motor Motor state Sensory
Command System System
External
influences

FIGURE 2. Forward models are

y to cancel realferent inputs. The forward dynamic and output models (upper row) generate an

estimate of reafference; the difference between this estimate and the actual reaflerent inputs signals (bottom row) can inform the CNS
about external events. This sensory discrepancy signal is also useful for training models.

ing an estimate of the sensory consequences of a
motor command, an internal forward model can be
used to cancel reafferent sensory signals, and thus
allow the external environment-related signals to be
recovered. Robinson has proposed just such a model
for the ocular motor system (Robinson et al., 1986),
allowing the generation of a true target velocity signal
(retinal slip of a visual object plus eye velocity) to
drive smooth pursuit movements of the eyes.

The internal sensory signal needed to cancel
reafference has been labelled corollary discharge
(Sperry, 1950), although the distinction between
efference copy (a motor signal: Festinger &
Cannon, 1965) and corollary discharge (an internal
sensory signal) is not always made clear.

2.2. Distal Supervised Learning

One fundamental problem which the CNS faces in
the context of control is that the goal and outcome of
a movement are often defined in task-related co-
ordinates. For example, when we reach a visual target
the goal is initially specified in a visual framework.
During the movement, any error in the motor
command causes a visual error. A second example
(Jordan & Rumelhart, 1992) is the control of speech,

Motor

State » Achieved
_ inverse _M Motor State
Desired ___g| Model System
State
Motor Error Forward State
(training signal) Model Error

FIGURE 3. Forward/inverse learning. A forward model can be
used to translate errors measured in the state of the motor
system into motor command errors needed to train an inverse
model.

where our training is based on hearing words spoken
and where the error signals available during speaking
are auditory, whilst the controller needs to adjust
motor commands to the vocal apparatus. A basic
problem therefore exists in translating these task-
related (visual or auditory) goals and errors into the
appropriate intrinsic signals (motor commands and
motor errors) which are required to update the
controller. The forward relationship between motor
signals and sensory signals can be captured by a
forward model (Figure 3). Jordan and Rumelhart
(1992) have shown how such a forward model can
then be used to estimate the motor errors during
performance, by the backpropagation of sensory
errors through the model. They called this approach
distal supervised learning because the supervision of
the task—the detection of performance errors in task-
related co-ordinates—is distal to the desired detection
of motor signal errors. They demonstrated that a
forward model could be used to transform errors
between the desired and actual sensory outcome of a
movement into the corresponding errors in the motor
command, thereby providing appropriate signals for
motor learning. While it is not clear how this error
backpropagation might be achieved in the CNS, the
theory is attractive and addresses some important
questions in motor learning.

2.3. State Estimation

During reaching movements, information about the
location of the hand is essential for accuracy; subjects
deprived of proprioceptive and cutancous cues are
very disabled (Rothwell et al., 1982; Cody et al., 1990;
Ghez et al., 1990; Hasan, 1992; Teasdale et al., 1993;
Ghez et al., 1995; Gordon et al., 1995; Sainburg et al.,
1995; Miall et al., 1996), and even in normal subjects,
it is necessary to have recent sensory information
from the hand to allow an accurate movement to be
executed (Ghez et al.,, 1995; Miall et al., 1996). We
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will focus here on the computations involved in
integrating sensory and motor information to provide
an estimate of the state of the arm (e.g., arm position
and velocity). Observer models (Figure 4) from
engineering formalise the sources of information
which the CNS could use to construct such an
estimate of the state of the arm during movement
(Goodwin & Sin, 1984). This framework consists of a
state estimation process, the observer, which moni-
tors the motor commands sent to the arm (efference
copy) and the returning sensory feedback. As
mentioned previously, the available sensory signals
(visual and proprioceptive) may not directly provide
an adequate state estimate. However, based on these
sensory and motor sources, the observer estimates the
arm’s state, integrating the multiple sources of
information to reduce the overall uncertainty in its
estimate (Abidi & Gonzalez, 1992). Observer models
generally use a recursive update formulation to
estimate the state of the arm as it evolves over time.
A central component of the observer model is often
an internal forward dynamic model of the arm, which
provides an estimate of the next state of the arm given
the current state and action. Such a state estimation
process can be used to maintain an optimal estimate
of the state of the hand during movement. The
Kalman filter (Kalman & Bucy, 1961) is an example
of an observer model. It provides a method for
obtaining state estimates by combining two pro-
cesses. The first process is based upon internal
simulation of the motor system while the second
uses sensory feedback to correct the internal
simulation. The relative contributions of the internal
simulation and sensory correction processes to the
final estimate are modulated across time so as to
provide optimal state estimates. Thus, Kleinman et
al. (1971) were able to use a Kalman—Bucy filter and
internal model to fit manual tracking data from
trained observers.

Such a state estimate could be used in motor
coordination. Consider the problem of coordinating
the motion of two different parts of the body: these
could be the two hands, or the hand and arm, or
perhaps the hand and eye. When using both hands,
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the control of one obviously must depend on the
current state (location and velocity) of the other. In
reach and grasp tasks there is a close link between the
aperture of the hand and the hand’s transport
towards the target. Haggard and Wing (1995) have
suggested a feedback model for this coordination
based on a state-space model, which can account for
observed responses to imposed perturbations of the
arm. However, as we will mention in the following
section, temporal delays in the sensory and motor
pathways suggest that for many movements, this
coordination needs to depend on a state estimate,
rather than on proprioceptive signals. Such an
estimate can be produced by a forward model. Thus
a coordination scheme could be envisaged almost
identical to Haggard and Wing’s, based on feedfor-
ward motor commands and a state estimate from a
forward model. For other tasks, such as the eyes
following the motion of the hand in the dark, then
there must be the requisite translation of the spatial
location of the hand into the motor coordinates of
the ocularmotor system.

2.4. Internal Feedback to Overcome Time Delays

Physiological control can be divided into feedforward
and feedback control strategies. Feedforward control
embraces all techniques for controlling a motor
apparatus (the effector organs, for example, muscle)
without reference to one or more controlled variables
(possibly muscle length or joint angles) describing the
current state of the motor system. In contrast,
feedback control uses some knowledge of the
controlled variables to determine the outgoing
motor commands. For example, the controller could
assess the difference between the sensed state of the
motor apparatus (e.g., sensed changes in muscle
length as signalled by the muscle spindles) and a
reference value for that variable. The controller could
then seek to minimise the difference by negative
feedback. Such negative feedback control is robust,
as the controller need not be precisely matched to the
motor apparatus—any errors in the motor output or
external disturbances will be sensed and corrected. Its
principal disadvantage is that feedback control is
sensitive to intrinsic delays in the sensorimotor loop.
A well designed feedback control system operates at
its highest possible open loop gain. However, at the
frequency at which the feedback delay introduces a
phase lag of 180°, the open loop gain must be kept
below unity to avoid instability. Therefore, feedback
controllers are extremely sensitive to delays, and must
be designed to avoid high gain at high frequencies.
This reduces the speed of their responses: a stable
feedback controller cannot respond at a speed which
is high with respect to the overall feedback delay.

In motor control delays arise in sensory transduc-
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tion, central processing, and in the motor output.
Sensor transduction latencies are most noticeable in
the visual system where the retina introduces a delay
of 30-60 ms, but sensory conduction delays can also
be appreciable. Central delays are also present due to
such ill-defined events such as neural computation,
decision making and the bottlenecks in processing
commands. Delays in the motor output result from
motorneuronal axonal conduction delays, muscle
excitation—contraction delays, and phase lags due to
the inertia of the system. These delays combine to
give an unavoidable feedback delay within the
negative feedback control loop, and can lie between
about 30 ms for a spinal reflex up to 200-300 ms for a
visually guided response. (The actual loop delay is
difficult to measure exactly, as it depends on factors
such as the type of perturbation and the task
demands: Keele & Posner, 1968; Zelaznik et al.,
1983; Barrett & Glencross, 1989; Miall, 1996.)

As fast arm movements can last less than 200 ms,
feedforward controllers must be used which issue
motor commands based on sensory inputs, but that
do not use feedback of the controlled variable.
Another physiological example would be the control
of human saccadic eye movements; although the
extra-ocular muscles do have muscle spindies, they do
not have a demonstrable stretch reflex, and the
spindles do not seem to be used in feedback control
of eye movement. Hence these extremely fast eye
movements are under feedforward control. However,
the main disadvantage of feedforward control is the
need to issue accurate and appropriate motor
commands to effect the desired outcome. This
implies detailed knowledge of the response character-
istics of the motor apparatus. Although this is
possible for structures such as the eye which has
relatively simple dynamics it is unlikely to be the case
for the multi-joint arm.

Hence another proposed use of internal forward
models is to assist in feedforward control by
providing an estimate of the outcome of a motor
command which can be used for negative feedback
control. In other words, by including the forward
model within an internal negative feedback loop, it
provides an internal feedback signal that is available
much more rapidly than the actual feedback signals
resulting from the movement. We have proposed a
particular form of this control strategy, known as a
Smith predictor (Miall et al., 1993). This includes a
forward model (Figure 5), servicing a rapid high-gain
internal feedback loop whose output can drive the
arm towards the desired state. The feedback
controller therefore compares the reference value of
a controlled variable with an estimate of the state of
the motor system, as provided by the forward model,
and corrects the estimated error signal. As the
internal forward model avoids the feedback delays
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in the real motor apparatus, this internal feedback
loop can have a high open-loop gain, and function as
a near-optimal feedforward controller. Note that
although a forward model cannot avoid some
intrinsic delays due to mneural processing and
conduction times (let us assume perhaps 50 ms in
total) it would be easy to develop a forward model
that predicted the motor system output 50 ms into the
future, and thus effectively cancelled these intrinsic
delays. In the limit, a negative feedback controller
with no feedback delay could have an open loop gain
of near infinity, and its output would be functionally
equivalent to that of an inverse model. The Smith
predictor also includes an explicit delay mechanism,
that delays a copy of the rapid sensory estimate to
allow temporally synchronous comparison with the
actual sensory consequences of the movement. This is
important to allow any errors in the internal estimate
to be detected and corrected. By ensuring synchrony
between the delayed output of the forward model and
the actual feedback, the Smith predictor effectively
isolates the feedback delays from the control loop.
Without this delay, a controller using a forward
model within an internal feedback loop must operate
in purely feedforward mode (without any actual
feedback from the movement) or with only very low
feedback gain to avoid instability. Hence the Smith
predictor combines the advantages of feedforward
control (although based on an internal feedback
mechanism) with those of feedback control.

2.5. State Prediction

In a manner similar to estimation of the current state
of the motor apparatus, a forward model can be used
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to estimate its state some time into the future. Such a
prediction could be used in at least two contexts.

2.5.1. Model Predictive Control. One can take the
basic idea of an internal feedback loop (as described
above) and extrapolate it into the future behaviour of
the plant. If the reference value that the controller is
seeking to reach is known in advance (either a
constant target value or a predictable signal), then the
state estimate of the future performance of the system
can be compared in advance, and predicted errors
corrected before they occur. This theory has been
developed as model predictive control (Garcia et al.,
1989), and conceptually shifts the control strategy
from negative feedback correction of errors towards
control based on anticipation of future events. In
principle it completely negates the delays in the motor
pathway, unlike the Smith predictor which can only
shift them outside of the control loop. Humans can
achieve zero-lag in tracking tasks in which the target
is predictable (Weir et al., 1989), and while this could
be due simply to anticipation of the target, model
predictive control might also be employed.

2.5.2. Mental Practice and Planning. Mental practice
can be thought of as rehearsing movements without
moving. It is known that mental practice can lead to
improved performance, and it is suggested that the
mental rehearsal allows performance to be monitored
and motor learning to take place in the absence of
real action (Hall et al.,, 1992; Yue & Cole, 1992).
During such mental practice a forward model could
be used to predict the outcome of one or a series of
actions: an estimate of a future state (which of course
could be generated by a forward model) and the
appropriate motor commands could be directed to
the model and yet blocked before reaching the motor
apparatus. Hence an iterative or recursive use of
forward models could allow mental practice and
mental imagery of arbitrarily distant motor states.
Based on the relationship between the desired
movement and its predicted outcome given by the
model, a controller could select between possible
actions, or the controller could itself adapt. Hence, a
forward model could also be involved in motor
planning. For example, in order to pick up a cup, the
planner must develop a suitable motor program
involving movement of the hand and arm. However,
if the cup is too far away from the body, the plan
might also include forward motion of the trunk and
possibly even locomotion. By internally testing the
developing plan, or alternative plans, via a forward
model, it would be possible to assess their utility.
Hence, the planner might initially test the plan
“extend arm”, but when the forward model
predicted that the hand would fall short of the cup’s
position, the planner could at least reject that plan,
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even though the forward model cannot by itself
provide a better plan.

3. LEARNING AND REPRESENTATION OF
INTERNAL MODELS

In this section we focus on two attributes of forward
models: adaptability and representation. As we grow
many of the parameters of the motor system, such as
link lengths and inertias, which govern the dynamics
of the motor system change dramatically. Hence, a
forward model which captures the dynamics of a
three-year-old child’s arm is unlikely to be of use to
the fully grown adult. Similarly, on a shorter time
scale the dynamics of the motor system change when
we pick up an object or even change the body’s
orientation with respect to gravity. Therefore, to be
useful the forward model needs to be adaptable. In
general the signals which are required to train or
update an internal model can be readily generated. In
the kinematic domain the forward model which
relates the sensed joint angles (inputs) to hand
location (outputs) can be trained by the monitoring
of synchronous input—output pairs. Any discrepancy
between the model output and the actual output of
the system can be used to update the model using any
of a number of supervised learning techniques [for a
review see Hertz et al. (1991)]. Similarly in the
dynamic domain the output is the predicted state
which can be compared to the actual state to produce
an error signal—any discrepancy can then be used to
update the forward model. Such a supervised learning
strategy has been shown to be effective in artificial
neural networks for producing reasonably accurate
forward models (Jordan & Rumelhart, 1992).
Supervised learning does not imply that one needs
goals for the movement, however, and models have
been proposed that correlate the estimated and actual
outcome of random motor commands (Kuperstein,
1991; Bullock et al., 1993; see also Konczak et al.,
1995).

By regarding forward models as function approx-
imators it is possible to explore the representation or
basis functions used to construct the model. Such a
representation can span a range of possibilities from
local to global. At one extreme, a function
approximator can be represented as a look-up table
in which corresponding input—output pairs are stored
(Atkeson, 1989; Rosenbaum et al., 1993). Thus, the
forward kinematic model could be represented as a
set of pairs of visual and motor co-ordinates. At the
other extreme of the range from local to global
representation is a model whose parameters are
defined by the physical attributes of the system.
Thus, the forward kinematic model could be
represented by the trigonometric equations relating
hand position to joint angles. Within the model
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would be parameters representing the link lengths
and in these models adaptation generally occurs
through tuning of the parameters (e.g., Harris, 1965).
Intermediate in the range of representation ability are
function approximators such as neural network
models (Hertz et al., 1991). Neural network models
fall into the general class of function approximation
models that are defined by a large number of
variables (e.g., the weights in a neural network) that
do not necessarily correspond to the physical
parameters of the system. For example, in Albus’
(1971) CMAC (cerebellar model articulatory con-
troller) model of co-ordinate transformations, input-
output pairs are stored in a distributed fashion over a
set of weights. There is a storage-flexibility payoff
where local representations require more storage but
are flexible to the class of functions that can be
approximated, whereas global representations require
little storage but are less flexible to the functions that
can be represented.

The way in which a training signal alters the
input—output relationship of the internal model
reflects its underlying representation. Therefore, one
way which can be used to probe the type of
representation used is through generalisation studies
(for a review of this technique see Bedford, 1989).
This generalisation technique has been applied to a
variety of internal models, although primarily to
inverse models. In this technique an altered relation-
ship is introduced locally between the normal inputs
and outputs of a system, and after learning the
generalisation pattern is assessed. Studies in the
kinematic domain have investigated pointing beha-
viour before and after an altered local remapping
(Bedford, 1989; Ghahramani et al., 1995; Imamizu et
al., 1995) and have shown that the local remapping
generalises substantially to points remote from the
remapped locations. These results rule out a look-up
table representation in which only visited cells in the
table are adjusted. A study of pointing in the plane
shows that the generalisation to a one point
remapping shows a Gaussian-like decay in general-
isation which is well captured by a Gaussian radial
basis function network (Ghahramani et al., 1995).
These studies suggest that kinematic generalisation is
best explained in terms of visual or Cartesian space.
Shadmehr and Mussa-Ivaldi (1994) have studied
generalisation in the dynamic domain. Subjects held
a robotic manipulator and were exposed to altered
dynamic environments which thereby changed the
normal input—output dynamics of the arm. Subjects
learned to achieve pre-perturbation performance in
one part of the workspace and then where tested for
after effects in another region. The after effects were
indicative that generalisation was based on intrinsic
joint coordinates rather than on the Cartesian co-
ordinates of the workspace.
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4. EVIDENCE FOR FORWARD MODELS

We now turn to the evidence for forward models. As
before we intend to restrict ourselves mainly to
considering the human control of arm movement, but
of course, we will also draw on animal studies
providing electrophysiological evidence supporting
internal models.

4.1. Behavioural Evidence for State Estimation

Although many studies have examined integration
among purely sensory stimuli (for a psychophysical
review see Welch and Warren, 1986) little is known of
how information is integrated during movement. In
Section 2.3 it was suggested that a forward model
could be used in an observer based system to estimate
the arm’s state. For example, when we move our arm
in the absence of visual feedback, there are three basic
methods the CNS can use to obtain an estimate of the
current state, the position and velocity, of the hand.
The system could make use of sensory inflow (the
information available from proprioception), it could
make use of integrated motor outflow (the motor
commands sent to the arm), or it could combine these
two sources of information via the use of a forward
model. Recently Wolpert et al. (1995) studied a
sensorimotor integration task in which subjects
estimated the location of their hand at the end of
movements made in the dark, with or without
externally-imposed forces. The subjects typically
made small errors in reporting the position of the
hand (they used a computer mouse with the other
hand to line up a cursor with the estimated position
of the moving hand). The errors varied with
movement duration. The temporal propagation of
the bias and variance of this state estimate was
therefore analysed as a function of movement and
compared to errors predicted within the observer
model framework (Figure 6a), making a simple
assumption about the accuracy of the internal
model. The bias of the subjects’ estimates showed
two distinct phases as a function of movement
duration, with an initial increase reaching a peak of
0.9 cm after 1 s followed by a sharp transition to a
region of gradual decline (Figure 6b). The variance of
the estimate also showed an initial increase during the
first second of movement after which it stabilised at
about 2 cm?. External forces applied to the manip-
ulandum also had distinct effects on the bias and
variance propagation. Wolpert and colleagues
showed that these results could be accounted for by
a Kalman filter model which combined both an
imperfect internal forward model simulation with
sensory correction, whereas sensory feedback or
internal simulation alone could not capture the
data. The internal model was set to slightly over-



1272

R. C. Miall and D. M. Wolpert

Motor Predicted
Command Forward Mode! Next State
of Arm’s
—®  Dynamics
Current State Néasxtti n?;?ée
Estimate
—
Predicted
Sensory Sensory State
Model of Feedback Error | Kaiman Correction
- Sensory = Gain
Output
Actual Sensory
Feedback
FIGURE 6a. A recursive observer model for estimating the state of the arm during movement.
Empirical Simulation
1.0 1.0
s SN | T
L
o 0.5 // 0.5
(.E //
m /
0.0 0.0, . : i
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
Time (s) Time (s)
& 25 2.5
£
£
o 2.0 /\/ 2.0
O
c
&8 15 1.5
F S
S /
1.0/ 1.0 .
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
Time (s) Time (s)

FIGURE 6b. Measured and simulated bias and variance propagation curves for human state estimates. The left paneis are the mean bias
and variance (+ SE, n=8 subjects) of subjects’ estimates of their hand position after an unseen movement. The right curves are
predictions based on the observer model illustrated in Figure 6a. From Wolpert et al. (1995).

estimate the motion of the hand for a given force
from the muscular system. This result is a clear
demonstration of the use of an internal model for
state estimation.

4.2. Coordination and Timing

In Section 2.3 we also discussed the use of a forward
model for coordination between movements of
different effectors. There are at least two lines of
evidence that support this suggestion. The first is the
study of the temporal relation between hand
kinematics and grip force when moving an object.
When subjects lift an object they modify their grip
force, and this grip force closely tracks the
acceleration of the object (Johanssen & Westling,
1984). This is not unexpected, as acceleration of the
object would increase the load on the hand, and

unless the grip force was sufficient, the object would
slip between the fingers. Johanssen and Westling
(1984) showed that the latency between peak load
force and peak grip force is essentially zero. More
recently, Flanagan and Wing (1993) report that this
synchronicity remains whether the movements are
made in the vertical or horizontal axes (where here
the relevant comparison was between grip force and
inertial force due to lateral acceleration), and at a
range of speeds (Figure 7). This close relationship
between load force and grip force was also seen in
even the first movement made by each subject lifting a
load. Clearly this implicates feedforward control. If
the subjects used a feedback based strategy, there
would be measurable delays between the increase or
decrease in load force measured at the hand, and the
corrective adjustment in grip forces. Furthermore, the
apparent generalisation of coordination between grip
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and hand across different directions and speeds rules
out simple synergies between muscles. Accurate
coordination between hand movement and grip
force requires knowledge of the distal effects
measured at the hand of the motor commands
moving the arm. So any effective synergy would
need to be based on knowledge of the limb’s
dynamics. Hence it seems likely that an internal
model was used to predict the actual movement of the
arm from the descending motor commands, and that
this estimate was used to compute and issue in time
the necessary commands to adjust the grip force,
negating the sensory-motor delays.

The second line of evidence comes from studies by
Vercher and colleagues (Vercher & Gauthier, 1988,
1992) of ocular tracking of the unseen hand. They
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reported that the eye followed the hand (actually
following a cursor driven by the hand) with no delay.
Again, this implies feedforward control, because of
the inherent delays in the system. When an additional
delay was interposed by computer between motion of
the hand and the observed motion of the cursor,
Vercher and Gauthier (1992) observed smooth
pursuit tracking that followed the hand motion and
preceded the cursor motion. This temporal coordina-
tion could not be achieved using feedback signals.

We would like to raise an additional, spatial
argument to the interpretation of these results. If the
grip force in Flanagan and Wing’s task can be
accurately adjusted for expected changes in load at
the hand, then the CNS must be able to calculate
those load forces at the hand. Hence the brain must
be able to assess the hand’s motion with respect to the
external gravitational field, and also estimate the
forces at the hand when the carried object is
accelerated laterally. These estimates would not be
easy without a forward model, and it would not be
sufficient just to be able to scale and time the grip
forces by an efferent copy of the descending motor
command. A critical test here would be to determine
that the grip and load forces were both synchronous
and accurately scaled even in movements which lead
to measurable different load forces at the hand, and
that had not been rehearsed. Recent data from those
authors points to this (Wing, 1996). In considering
the results presented by Vercher et al., we do not
know of any published data on the spatial accuracy
of the eyes’ tracking of the hand in the dark, but we
would offer the same argument as for grip forces. If,
as we predict, the eyes can accurately follow the
position of the unseen hand with zero latency, even
when the arm configuration makes the hand’s
position vary with respect, say, to shoulder posi-
tion, then the ocular controller must have access to an
estimate of the hand’s spatial position. Again, to
estimate the hand’s position accurately in space, and
to predict this position such that the eye can be
commanded in time to track that position with zero
lag requires a forward model. We are currently
testing this hypothesis.

5. LOCALISATION OF A FORWARD MODEL

We now turn to the question of where these forward
models may be found. Of course, it will be clear from
the previous sections that forward models could be
used within a number of motor systems, in a number
of different ways. There might be several forward
models in different brain sites. For example, a
forward model has been proposed for ocularmotor
control, and would be expected to be in brain stem
circuits; a forward model used for high level motor
planning is more likely to be found in association
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areas of the cerebral cortex. However, a strong
contender for the forward models used in internal
feedback control of movement (either for state
estimation or for state prediction) must be the
cerebellum. This structure is known to be involved
in motor coordination, although its precise role is far
from clear. We have reviewed recently the reasons
why we believe it forms a forward model, and will not
repeat those reasons here (Miall et al., 1993). To
summarise, we argued from comparative anatomy,
from data on inactivation of the cerebellum, and
from electrophysiology, that the cerebellum contains
one, if not several, forward models in the form of
Smith predictors.

We have recently shown that patients with damage
to the outflow of the cerebellum are poor at tracking
tasks in which they are deprived of visual feedback of
hand position (Cody et al, 1991; Haggard et al.,
1995). Denial of visual feedback helps these patients
to reduce hand oscillations (which probably arise
from instability in the visual feedback loop), as
expected from a controller with long time delays.
However, without visual feedback they cannot
control the velocity of their wrist movements, which
we suggested implies the cerebellum in state
estimation during the movements.

In Section 4.2 we suggested that a forward model
would be used for coordination between different
motor systems. To support the suggestion that this
function requires the cerebellum, Vercher and
Gauthier (1988) have shown that monkeys, like
humans, can make eye movements to follow move-
ment of a cursor controlled by the hand with very low
latency. However, inactivation of the cerebellum
tmpaired this ocular-manual coordination, so that
the latency of the eye movements rose to a level
normally seen when tracking an external, unpredict-
able, target (Figure 8). They have also recently
demonstrated that sensory afferents are not required
for the temporal linking of ocular and manual
systems, whilst motor outputs are required (Vercher
et al., 1996). This confirms that efferent copy is an
important part of the coordination process. Likewise,
van Donkelaar and Lee (1994) have shown that
cerebellar patients have impaired ocular tracking of
the cursor moved by the hand, and suggest that the
cerebellum normally mediates ocular-manual coor-
dination. It has also been demonstrated that
cerebellar patients are impaired in the precision grip
tasks studied by Flanagan and Wing, losing the close
relationship between load forces and grip forces
(Hermsdorfer et al., 1994), and Muller and Dichgans
(1994) report that cerebellar patients lose the low-
latency coupling between grip and load forces.
Furthermore, single unit recording studies show that
the cerebellum is highly active in such tasks (Espinoza
& Smith, 1990; Dugas & Smith, 1992). Thus there
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FIGURE 8. Ocular to manual tracking latencies measured in
monkeys. The intact animals could make short latency smooth
pursuit of a self moved target (A), but unpredictable targets were
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permission.

seems a body of evidence that the cerebellum may be
critical for all these coordination tasks. It seems likely
to us, although we accept that we are extrapolating
beyond the data, that the cerebellum’s role in these
diverse tasks is to provide the forward model
estimates and predictions of the state of the motor
system.

6. PHYSIOLOGICAL IDENTIFICATION OF AN
INTERNAL MODEL IN THE BRAIN

In this final section, we ask how a forward (or
inverse) model might be detected electrophysiologi-
cally, or by some physiological interventions. It is
perhaps best to split this problem into several parts.

6.1. Input Signals

First, one could record the inputs to the putative
forward model, and test whether they conform to
those required. For a forward model, two major
inputs would be a set of sensed state signals,
necessary to update the forward model, and the
efferent copy of motor commands, from which the
state estimate is generated. The cerebellum certainly
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receives both of these. It receives a large input from
fibres descending from the motor cortex, via the pons,
and it is thought that these represent the efferent copy
of outgoing motor commands. The cerebellum also
receives a vast amount of proprioceptive information
directly from the ascending dorsal spinocerebellar
tracts, which provide an update on the state of the
motor apparatus. Remember that these sensory
signals are delayed, and in different coordinate
systems from the required information of the current
state; they cannot be used instead of the forward
model. The ventral spinocerebellar tracts are not
purely sensory, however, and carry ascending
information even in the absence of muscular activity
(if the muscles are blocked). This may represent
efferent copy from the spinal circuitry, updating the
cerebellum on those motor outputs being controlled
at a spinal level.

6.2. Output Signals

One could also test the outputs of a forward model,
which should correlate with the expected state of the
motor apparatus. This is rather difficult, however, as
one would need to distinguish between internal
predicted state signals arising from the model, the
external sensory signals from the periphery, and
motor commands. For the ocular system, especially
during movement in a single dimension, it might be
difficult to disentangle sensory and motor signals.
The dynamics of the eye are quite straightforward,
and the temporal envelope of motor commands to the
eye has strong similarities to feedback signals from
the resultant motion of the eye. Thus it is not
straightforward to decide if a central neural signal
represents a motor command (on an efferent copy), a
sensory estimate, or peripheral sensory signal. This
has been undertaken by Shidara et al. (1993),
however, who were able to predict the firing rate of
cells in the cerebellar cortex from measurements of
the acceleration and velocity of the eye. They
propose, in contrast to our hypothesis, that the
cerebellum generates a signal close to the output
expected from an inverse dynamics model driving the
recorded eye movements. They also argue, because
the parameters from their regression equations which
predict the firing rate at one eye velocity can also
match the firing rates measured at other velocities,
that this implies that the model is indeed a parametric
inverse model.

The difficulty of separating state signals from
motor commands can also be raised for the manual
motor system, although because of the much greater
complexity of the kinematics and dynamics of the
arm, it should be possible to separate the signals
unambiguously. The human arm has redundancy in
the number of degrees of freedom of its joints. We
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can position a fingertip on a target, and adopt a wide
range of arm configurations without lifting the finger
from its fixed location. Thus if a forward model
represented the state of the hand (or fingertip)
location in extrinsic coordinates, its output could be
independent of the differing arm configurations (a
many-to-one mapping of motor commands to state
estimates). One can also cause the same motion of the
hand with very widely different muscle torques (with
more or less co-contraction about each joint); these
again should separate the motor and sensory signals.
It would also be easier in the slower moving manual
system to temporally separate out motor and sensory
signals. A central signal that coded for hand motion
(as tested by the criteria just mentioned) with zero or
negative latency to the actual movement could only
arise from an internal model. There have been many
reports, of course, that neural signals co-vary with
parameters of the movement, and have negative
latencies. But one needs to demonstrate that the
neural signal correlates better with the motor
outcome than the estimated motor commands (e.g.,
with different levels of co-contraction) before this can
be definite.

Blocking sensory inputs (by peripheral denerva-
tion) would likely disrupt the forward model, so this
intervention might not make the model output more
easy to identify. Hence, it seems likely that the best
one could do would be to identify an internal signal
that co-varied with state, and not motor outflow.
Inactivating the outputs of the forward model may be
more hopeful. As Haggard et al. (1995) reported,
head injured ataxic patients suffer selective damage to
the superior cerebellar peduncle, carrying the
cerebello-cerebral fibres, and display manual track-
ing behaviour consistent with loss of a forward model
(Section 5).

6.3. Neural Codes

One can add to these experimental problems the fact
that we do not know what the neural code for an
internal model will be. At the periphery of the
nervous system it has proved quite straightforward to
identify sensory afferent signals, and to identify the
neural codes for different aspects of the sensory
stimulus, Likewise, in later stages of the motor
system, the relationships between efferent motor
signals and muscle activity are quite clear. It is in
the central nervous system, where these internal
models are proposed, that the coding is less
obvious. It is not clear, therefore, whether neurons
in the input or output layers of an internal model will
code, as one example, movement amplitude tempo-
rally or spatially, in parallel or individually, in
extrinsic or intrinsic co-ordinates. It will therefore
be quite difficult to be certain of the presence of an
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internal model just on electrophysiological grounds.
Alternative techniques, using fMRI or PET scanning
may prove equally difficult, because of their current
temporal limits set by the dynamics of changing
cerebral blood flow. MEG technology may therefore
be a useful tool, perhaps combined with the high
spatial resolution of fMRI.

6.4. Training Signals

However, it may be fruitful to try to record those
signals used to develop and adapt these internal
models, rather than the input or output of the model
itself. Neural networks can be trained with any
number of different training algorithms, but there is
always a fundamental relationship between the
training signal and the developing neural representa-
tion. To develop an inverse model, the training signal
must inform the model about its desired behaviour in
terms of the outgoing motor commands. For a
forward model, the training signal must inform
about the desired sensory estimate. Hence one could
test candidate training signals for their correlation
with sensory or motor errors. It is possible to develop
tasks in which the relationships between movement
errors and the associated sensory or motor signals are
unambiguous (Kawato & Gomi, 1993), and thus
determine whether the training signal coded for a
motor error (i.€., an error in the motor command) or
a sensory error (an error in the prediction of the
movement’s outcome). The most obvious candidate
signal so far studied is the climbing fibre input to the
cerebellum. Although there is still debate about it
(e.g., the forthcoming issue of Behavioural Brain
Sciences on Motor Learning), many workers have
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argued that these climbing fibres carry a training or
instruction signal. Gellman et al. (1985) showed that
climbing fibres could be reliably activated by
cutaneous inputs on the paws of a walking cat, but
were inactive if the animal actively used that foot
(Figure 9). Thus they suggested the climbing fibres
signalled unexpected sensory events. This is exactly
what would be expected of a sensory error signal.
Andersson and Armstrong (1987) have reported
similar results. These sets of evidence indicating that
the climbing fibres are sensitive to passive stimulation
could reflect the situation in which a sensory
prediction fails: sensory inputs are received that are
not expected, based on the normal expectation of
sensory input in the absence of movement. They
again suggest that the cerebellum may be responsible
for the development of a forward model: if the
climbing fibres were a motor error signal [responsible
for training an inverse model (Gomi & Kawato, 1992;
Kawato & Gomi, 1992)], this sensitivity to passive
stimulation would be difficult to explain.

7. CONCLUSIONS

The evidence for internal models in physiological
motor systems is still indirect. However, there are a
number of experiments that point to the existence and
use of internal forward models. Of course, many
problems remain to be resolved.

Where in the brain are these models held?
Localisation of internal models will likely come
about through investigation such as neuronal
recording, stimulation, lesioning, and functional
imaging. We believe that several such lines of
evidence point to the cerebellum as the most
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probable site of the forward models for limb
movement (Miall et al., 1993).

How are these models represented? Behavioural
tests of generalisation may well illuminate this
question. One can explore how well subjects general-
ise across the full parameter space in which their
learning takes place, and thus gain insight into the
representation of the stored knowledge. As an
example, the evidence of Ghahramani et al. (1995)
points to a representation with large functional
receptive fields rather than a local look-up table.
The further step of identifying the actual neural code
used will certainly require an electrophysiological
approach.

What are the learning rules governing their
development and the physiological mechanisms
allowing their adaptation? Again, it seems possible
that the rules could be identified behaviourally, by
limiting the control signals available to the subjects,
or by studying the rate and extent of learning in
different contexts. Great strides have already been
made in understanding synaptic mechanisms that
could underlie long-term learning; a major challenge
remains to definitively link these synaptic mechan-
isms to learning measured at the level of motor
psychophysics.

Are there many separate models for different
modes of motor control or a few generalised
models? We have suggested that a forward model
can be used in many different ways. It is not known
whether a single model would subserve several
different purposes, or whether several independent
models would be used in parallel (Jacobs et al., 1991;
Jordan & Jacobs, 1992). If there are multiple models,
will they reside in one site perhaps co-localised
because they all depend on a common neural
substrate, or will they be found in separate sites
closer to their functional role?

Are there several models in a hierarchy, coding for
sensory predictions in different coordinate frames?
We have suggested this might be possible within the
cerebellum (Miall et al., 1993), with models predicting
the outcome of movement within visual (or kinematic
frameworks) and within motor (or dynamic) frame-
works.

We look forward to the next few years to bring
clear resolutions to some of these questions.
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