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Abstract 

Even in state-spaces of modest size, planning is plagued by the “curse of dimen
sionality”. This problem is particularly acute in human and animal cognition given 
the limited capacity of working memory, and the time pressures under which plan
ning often occurs in the natural environment. Hierarchically organized modular 
representations have long been suggested to underlie the capacity of biological 
systems1,2 to efficiently and flexibly plan in complex environments. However, the 
principles underlying efficient modularization remain obscure, making it difficult to 
identify its behavioral and neural signatures. Here, we develop a normative theory 
of efficient state-space representations which partitions an environment into distinct 
modules by minimizing the average (information theoretic) description length of 
planning within the environment, thereby optimally trading off the complexity of 
planning across and within modules. We show that such optimal representations 
provide a unifying account for a diverse range of hitherto unrelated phenomena at 
multiple levels of behavior and neural representation. 

1 Introduction 

In a large and complex environment, such as a city, we often need to be able to flexibly plan so that we 
can reach a wide variety of goal locations from different start locations. How might this problem be 
solved efficiently? Model-free decision making strategies3 would either require relearning a policy, 
determining which actions (e.g. turn right or left) should be chosen in which state (e.g. locations in 
the city), each time a new start or goal location is given – a very inefficient use of experience resulting 
in prohibitively slow learning (but see Ref. 4). Alternatively, the state-space representation used for 
determining the policy can be augmented with extra dimensions representing the current goal, such 
that effectively multiple policies can be maintained5, or a large “look-up table” of action sequences 
connecting any pair of start and goal locations can be represented – again leading to inefficient use of 
experience and potentially excessive representational capacity requirements. 

In contrast, model-based decision-making strategies rely on the ability to simulate future trajectories 
in the state space and use this in order to flexibly plan in a goal-dependent manner. While such 
strategies are data- and (long term) memory-efficient, they are computationally expensive, especially 
in state-spaces for which the corresponding decision tree has a large branching factor and depth6. 
Endowing state-space representations with a hierarchical structure is an attractive approach to 
reducing the computational cost of model-based planning7–11 and has long been suggested to be 
a cornerstone of human cognition1. Indeed, recent experiments in human decision-making have 
gleaned evidence for the use and flexible combination of “decision fragments”12 while neuroimaging 
work has identified hierarchical action-value reinforcement learning in humans13 and indicated that 
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dorsolateral prefrontal cortex is involved in the passive clustering of sequentially presented stimuli 
when transition probabilities obey a “community” structure14. 

Despite such a strong theoretical rationale and empirical evidence for the existence of hierarchical 
state-space representations, the computational principles underpinning their formation and utilization 
remain obscure. In particular, previous approaches proposed algorithms in which the optimal state-
space decomposition was computed based on the optimal solution in the original (non-hierarchical) 
representation15,16. Thus, the resulting state-space partition was designed for a specific (optimal) 
environment solution rather than the dynamics of the planning algorithm itself, and also required a 
priori knowledge of the optimal solution to the planning problem (which may be difficult to obtain in 
general and renders the resulting hierarchy obsolete). Here, we compute a hierarchical modularization 
optimized for planning directly from the transition structure of the environment, without assuming 
any a priori knowledge of optimal behavior. Our approach is based on minimizing the average 
information theoretic description length of planning trajectories in an environment, thus explicitly 
optimizing representations for minimal working memory requirements. The resulting representation 
are hierarchically modular, such that planning can first operate at a global level across modules 
acquiring a high-level “rough picture” of the trajectory to the goal and, subsequently, locally within 
each module to “fill in the details”. 

The structure of the paper is as follows. We first describe the mathematical framework for optimizing 
modular state-space representations (Section 2), and also develop an efficient coding-based approach 
to neural representations of modularised state spaces (Section 2.6). We then test some of the key 
predictions of the theory in human behavioral and neural data (Section 3), and also describe how this 
framework can explain several temporal and representational characteristics of “task-bracketing” and 
motor chunking in rodent electrophysiology (Section 4). We end by discussing future extensions and 
applications of the theory (Section 5). 

2 Theory 

2.1 Basic definitions 

In order to focus on situations which require flexible policy development based on dynamic goal 
requirements, we primarily consider discrete “multiple-goal” Markov decision processes (MDPs). 
Such an MDP, M := {S, A, T , G}, is composed of a set of states S, a set of actions A (a subset 
As of which is associated with each state s 2 S), and transition function T which determines the 
probability of transitioning to state sj upon executing action a in state si, p(sj |si, a) := T (si, a, sj ). 
A task (s, g) is defined by a start state s 2 S and a goal state g 2 G and the agent’s objective is to 
identify a trajectory of via states v which gets the agent from s to g. We define a modularization
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M of the state-space S to be a set of Boolean matrices M := {Mi}i=1...m indicating the module 
membership of all states s 2 S. That is, for all s 2 S, there exists i 2 1, . . . , m  such that 
Mi(s) = 1, Mj (s) = 0  8j =6 i. We assume this to form a disjoint cover of the state-space 
(overlapping modular architectures will be explored in future work). We will abuse notation by 
using the expression s 2 M to indicate that a state s is a member of a module M . As our planning 
algorithm P , we consider random search as a worst-case scenario although, in principle, our approach 
applies to any algorithm such as dynamic programming or Q-learning3 and we expect the optimal 
modularization to depend on the specific algorithm utilized. 

We describe and analyze planning as a Markov process. For planning, the underlying state-space is 
the same as that of the MDP and the transition matrix T is a marginalization over a planning policy 

1
⇡plan (which, here, we assume is the random policy ⇡rand(a|si) :=  | )|Asi 

Tij =
X 

⇡plan(a|si) T (si, a, sj ) (1) 
a 

Given a modularization M, planning at the global level is a Markov process MG corresponding to 
a “low-resolution” representation of planning in the underlying MDP where each state corresponds 

1This is an example of a “propositional representation” 17,18 and is analogous to state aggregation or “clus
tering” 19,20 in reinforcement learning which is typically accomplished via heuristic bottleneck discovery algo
rithms 21. Our method is novel in that it does not require the optimal policy as an input and is founded on a 
normative principle. 
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to a “local” module Mi and the transition structure TG is induced from T via marginalization and 
normalization22 over the internal states of the local modules Mi. 

2.2 Description length of planning 

We use an information-theoretic framework23,24 to define a measure, the (expected) description 
length (DL) of planning, which can be used to quantify the complexity of planning P in the induced 
global L(P|MG) and local modules L(P|Mi). We will compute the DL of planning, L(P), in a 
non-modularized setting and outline the extension to modularized planning DL L(P|M) (elaborating 
further in the supplementary material). Given a task (s, g) in an MDP, a solution v(n) to this task 

(n) (n)is an n-state trajectory such that v = s and vn = g. The description length (DL) of this 1 

trajectory is L(v(n)) :=  - log pplan(v(n)). A task may admit many solutions corresponding to 
different trajectories over the state-space thus we define the DL of the task (s, g) to be the expectation 
over all trajectories which solve this task, namely 

1

L(s, g) := Ev,n 

h
L(v(n))

i 
= -

X X 
p(v(n)|s, g) log p(v(n)|s, g) (2) 

n=1 v(n) 

This is the (s, g)-th entry of the trajectory entropy matrix H of M. Remarkably, this can be expressed 
in closed form25: 

[H]sg = 
X

[(I - Tg )
-1]sv Hv (3) 

v 6=g 

where T is the transition matrix of the planning Markov chain (Eq. 1), Tg is a sub-matrix correspond
ing to the elimination of the g-th column and row, and Hv is the local entropy Hv := H(Tv·) at state 
v. Finally, we define the description length L(P) of the planning process P itself over all tasks (s, g) 

L(P) := Es,g [L(s, g)] = 
X 

Ps Pg L(s, g) (4) 
(s,g) 

where Ps and Pg are priors of the start and goal states respectively which we assume to be factorizable 
P(s,g) = Ps Pg for clarity of exposition. In matrix notation, this can be expressed as L(P) = Ps H Pg 

T 

where Ps is a row-vector of start state probabilities and Pg is a row-vector of goal state probabilities. 

The planning DL, L(P|M), of a nontrivial modularization of an MDP requires (1) the computation 
of the DL of the global L(P|MG) and the local planning processes L(P|Mi) for global MG and 
local Mi modular structures respectively, and (2) the weighting of these quantities by the correct 
priors. See supplementary material for further details. 

2.3 Minimum modularized description length of planning 

Based on a modularization, planning can be first performed at the global level across modules, and 
then subsequently locally within the subset of modules identified by the global planning process 
(Fig. 1). Given a task (s, g) where s represents the start state and g represents the goal state, global 
search would involve finding a trajectory in MG from the induced initial module (the unique Ms such 
that Ms(s) = 1) to the goal module (Mg (g) = 1). The result of this search will be a global directive 
across modules Ms !  · · ·  !  Mg. Subsequently, local planning sub-tasks are solved within each 
module in order to “fill in the details”. For each module transition Mi ! Mj in MG, a local search 
in Mi is accomplished by planning from an entrance state from the previous module, and planning 
until an exit state for module Mj is entered. This algorithm is illustrated in Figure 1. 

By minimizing the sum of the global L(P|MG) and local DLs L(P|Mi), we establish the optimal 
modularization M⇤ of a state-space for planning: 

M⇤ := arg min [L(P|M) + L(M)] , where L(P|M) := L(P|MG) +
X 

L(P|Mi) (5)
M 

i 

Note that this formulation explicitly trades-off the complexity (measured as DL) of planning at the 
global level, L(P|MG), i.e. across modules, and at the local level, L(P|Mi), i.e. within individual 
modules (Fig. 1C-D). In principle, the representational cost of the modularization itself L(M) is also 
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Fig. 1 “Explanation”
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part of the trade-off, but we do not consider it further here for two reasons. First, in the state-spaces 
considered in this paper, it is dwarfed by the the complexities of planning, L(M) ⌧ L(P|M) 
(see the supplementary material for the mathematical characterization of L(M)). Second, it taxes 
long-term rather than short-term memory, which is at a premium when planning26,27. Importantly, 
although computing the DL of a modularization seems to pose significant computational challenges 
by requiring the enumeration of a large number of potential trajectories in the environment (across 
or within modules), in the supplementary material we show that it can be computed in a relatively 
straightforward manner (the only nontrivial operation being a matrix inversion) using the theory of 
finite Markov chains22. 

2.4 Planning compression 

The planning DL L(s, g) for a specific task (s, g) describes the expected difficulty in finding an 
intervening trajectory v for a task (s, g). For example, in a binary coding scheme where we assign 
binary sequences to each state, the expected length of string of random 0s and 1s corresponding to a 
trajectory will be shorter in a modularized compared to a non-modularized representation. Thus, we 
can examine the relative benefit of an optimal modularization, in the Shannon limit, by computing 
the ratio of trajectory description lengths in modularized and non-modularized representations of 
a task or environment28. In line with spatial cognition terminology29, we refer to this ratio as the 
compression factor of the trajectory. 
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Figure 1. Modularized planning. A. Schematic exhibiting how planning, which could be highly 
complex using a flat state space representation (left), can be reformulated into a hierarchical planning 
process via a modularization (center and right). Boxes (circles or squares) show states, lines are 
transitions (gray: potential transitions, black: transitions considered in current plan). Once the “global 
directive” has been established by searching in a low-resolution representation of the environment 
(center), the agent can then proceed to “fill in the details” by solving a series of local planning 
sub-tasks (right). Formulae along the bottom show the DL of the corresponding planning processes. 
B. Given a modularization, a serial hierarchical planning process unfolds in time beginning with 
a global search task followed by local sub-tasks. As each global/local planning task is initiated in 
series, there is a phasic increase in processing which scales with planning difficulty in the upcoming 
module as quantified by the local DL, L(P|Mi). C. Map of London’s Soho state-space, streets (lines, 
with colors coding degree centrality) correspond to states (courtesy of Hugo Spiers). D. Minimum 
expected planning DL of London’s Soho as a function of the number of modules (minimizing over 
all modularizations with the given number of modules). Red: global, blue: local, black: total DL. 
E. Histogram of compression factors of 200 simulated trajectories from randomly chosen start to 
goal locations in London’s Soho. F. Absolute entropic centrality (EC) differences within and across 
connected modules in the optimal modularization of the Soho state-space. G. Scatter plot of degree 
and entropic centralities of all states in the Soho state-space. 
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2.5 Entropic centrality 

The computation of the planning DL (Section 2.2) makes use of the trajectory entropy matrix H of a 
Markov chain. Since H is composed of weighted sums of local entropies Hv , it suggests that we can 
express the contribution of a particular state v to the planning DL by summing its terms for all tasks 
(s, g). Thus, we define the entropic centrality, Ev , of a state v via 

Ev =	 
X 

Dsvg Hv (6) 
s,g 

where we have made use of the fundamental tensor of a Markov chain D with components Dsvg = ⇥
(I - Tg)-1

⇤ 
. Note that task priors can easily be incorporated into this definition. The entropic 

sv
centrality (EC) of a state measures its importance to tasks across the domain and its gradient can 
serve as a measure of “subgoalness” for the planning process P . Indeed, we observed in simulations 
that one strategy used by an optimal modularization to minimize planning complexity is to “isolate” 
planning DL within rather than across modules, such that EC changes more across than within 
modules (Fig. 1F). This suggests that changes in EC serve as a good heuristic for identifying modules. 

Furthermore, EC is tightly related to the graph-theoretic notion of degree centrality (DC). When tran
sitions are undirected and are deterministically related to action, degree centrality deg(v) corresponds 
to the number of states which are accessible from a state v. In such circumstances and assuming a 
random policy, we have 

1 
Ev =	 

X 
Dsvg log(deg(v)) (7)

deg(v)
s,g 

The ECs and DCs of all states in a state-space reflecting the topology of London’s Soho are plotted in 
Fig. 1G and show a strong correlation in agreement with this analysis. In Section 3.2 we test whether 
this tight relationship, together with the intuition developed above about changes in EC demarcating 
approximate module boundaries, provides a normative account of recently observed correlations 
between DC and human hippocampal activity during spatial navigation30. 

2.6 Efficient coding in modularized state-spaces 

In addition to “compressing” the planning process, modularization also enables a neural channel to 
transmit information (for example, a desired state sequence) in a more efficient pattern of activity 
using a hierarchical entropy coding strategy31 whereby contextual codewords signaling the entrance 
to and exit from a module constrain the set of states that can be transmitted to those within a 
module thus allowing them to be encoded with shorter description lengths according to their relative 
probabilities28 (i.e. a state that forms part of many trajectory will have a shorter description length 
than one that does not). Assuming that neurons take advantage of these strategies in an efficient 
code32, several predictions can be made with regard to the representational characteristics of neuronal 
populations encoding components of optimally modularized state-spaces. We suggest that the phasic 
neural responses (known as “start” and “stop” signals) which have been observed to encase learned 
behavioral sequences in a wide range of control paradigms across multiple species33–36 serve this 
purpose in modularized control architectures. Our theory makes several predictions regarding the 
temporal dynamics and population characteristics of these start/stop codes. First, it determines 
a specific temporal pattern of phasic start/stop activity as an animal navigates using an optimally 
modularized representation of a state-space. Second, neural representations for the start signals should 
depend on the distribution of modules, while the stop codes should be sensitive to the distribution 
of components within a module. Considering the minimum average description length of each of 
these distribution, we can make predictions regarding how much neural resources (for example, the 
number of neurons) should be assigned to represent each of these start/stop variables. We verify these 
predictions in published neural data36,34 in Section 4. 

3 Route compression and state-space segmentation in spatial cognition 

3.1 Route compression 

We compared the compression afforded by optimal modularization to a recent behavioral study 
examining trajectory compression during mental navigation29. In this task, students at the University 
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Fig. 2 “SpatialCog”
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of Toronto were asked to mentally navigate between a variety of start and goal locations on their 
campus and the authors computed the (inverse) ratio between the duration of this mental navigation 
and the typical time it would physically take to walk the same distance. Although mental navigation 
time was substantially smaller than physical time, it was not simply a constant fraction of it, but 
instead the ratio of the two (the compression factor) became higher with longer route length (Fig. 2A). 
In fact, while in the original study only a linear relationship between compression factor and physical 
route length was considered, reanalysing the data yielded a better fit by a logarithmic function 
(R2 = 0.69 vs. 0.46). 

In order to compare our theory with these data, we computed compression factors between the 
optimally modularized and the non-modularized version of an environment. This was because 
students were likely to have developed a good knowledge of the campus’ spatial structure, and so 
we assumed they used an approximately optimal modularization for mental navigation, while the 
physical walking time could not make use of this modularization and was bound to the original 
non-modularized topology of the campus. As we did not have access to precise geographical data 
about the part of the U. Toronto campus that was used in the original experiment, we ran our algorithm 
on a part of London Soho which had been used in previous studies of human navigation30. Based on 
200 simulated trajectories over route lengths of 1 to 10 states, we found that our compression factor 
showed a similar dependence on route length2 (Fig. 2B) and again was better fit by a logarithmic 
versus a linear function (R2 = 0.82 vs. 0.72, respectively). 
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Figure 2. Modularized representations for spatial cognition. A. Compression factor as a function 
of route length for navigating the U. Toronto campus (reproduced from Ref. 29) with linear (grey) 
and logarithmic fits (blue). B. Compression factors for the optimal modularization in the London 
Soho environment. C. Spearman correlations between changes in local planning DL, L(P|Mi), and 
changes in different graph-theoretic measures of centrality. 

3.2 Local planning entropy and degree centrality 

We also modeled a task in which participants, who were trained to be familiar with the environment, 
navigated between randomly chosen locations in a virtual reality representation of London’s Soho 
by pressing keys to move through the scenes30. Functional magnetic resonance imaging during 
this task showed that hippocampal activity during such self-planned (but not guided) navigation 
correlated most strongly with changes in a topological state “connectedness” measure known as 
degree centrality (DC, compared to other standard graph-theoretic measures of centrality such as 
“betweenness” and “closeness”). Although changes in DC are not directly relevant to our theory, we 
can show that they serve as a good proxy for a fundamental quantity in the theory, planning DL (see 
Eq. 7), which in turn should be reflected in neural activations. 

To relate the optimal modularization, the most direct prediction of our theory, to neural signals, we 
made the following assumptions (see also Fig. 1B). 1. Planning (and associated neural activity) 
occurs upon entering a new module (as once a plan is prepared, movement across the module can 
be automatic without the need for further planning, until transitioning to a new module). 2. The 
magnitude of neural activity is related to the local planning DL, L(P|Mi), of the module (as the 
higher the entropy, the more trajectories need to be considered, likely activating more neurons with 
different tunings for state transitions, or state-action combinations37, resulting in higher overall 

2Note that the absolute scale of our compression factor is different from that found in the experiment because 
we did not account for the trivial compression that comes from the simple fact that it is just generally faster to 
move mentally than physically. 
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Fig. 3 “Start/stop”
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Figure 3. Neural activities encoding module boundaries. A. T-maze task in which tone determines 
the location of the reward (reproduced from Ref. 34). Inset: the model’s optimal modularization 
of the discretized T-maze state-space. Note that the critical junction has been extracted to form its 
own module which isolates the local planning DL caused by the split in the path. B. Empirical data 
exhibiting the temporal pattern of task-bracketing in dorsolateral striatal (DLS) neurons. Prior to 
learning the task, ensemble activity was highly variable both spatially and temporally throughout 
the behavioral trajectory. Reproduced from Ref. 34. C. Simulated firing rates of “task-responsive” 
neurons after and before acquiring an optimal modularization. D. The optimal modularization 
(colored states are in the same module) of a proposed state-space for an operant conditioning task36. 
Note that the lever pressing sequences form their own modules and thus require specialized start/stop 
codes. E. Analyses of striatal neurons suggesting that a larger percentage of neurons encoded lever 
sequence initiations compared to terminations, and that very few encoded both. Reproduced from 
Ref. 36. F. Description lengths of start/stop codes in the optimal modularization. 

activity in the population). Furthermore, as before, we also assume that participants were sufficiently 
familiar with Soho that they used the optimal modularization (as they were specifically trained in 
the experiment). Having established that under the optimal modularization entropic centrality (EC) 
tends to change more across than within modules (Fig. 1F), and also that EC is closely related to DC 
(Fig. 1G), the theory predicts that neural activity should be timed to changes in DC. Furthermore, 
the DLs of successive modules along a trajectory will in general be positively correlated with the 
differences between their DLs (due to the unavoidable “regression to the mean” effect3). Noting that 
the planning DL of a module is just the (weighted) average EC of its states (see Section 2.5), the 
theory thus more specifically predicts a positive correlation between neural activity (representing the 
DLs of modules) and changes in EC and therefore changes in DC – just as seen in experiments. 

We verified these predictions numerically by quantifying the correlation of changes in each centrality 
measure used in the experiments with transient changes in local planning complexity as computed 
in the model (Fig. 2C). Across simulated trajectories, we found that changes in DC had a strong 
correlation with changes in local planning entropy (mean ⇢deg = 0.79) that was significantly higher 
(p < 10-5, paired t-tests) than the correlation with the other centrality measures. We predict that even 
higher correlations with neural activity could be achieved if planning DL according to the optimal 
modularization, rather than DC, was used directly as a regressor in general linear models of the fMRI 
data. 

3Transitioning to a module with larger/smaller DL will cause, on average, a more positive/negative DL 
change compared to the previous module DL. 
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4 Task-bracketing and start/stop signals in striatal circuits 

Several studies have examined sequential action selection paradigms and identified specialized task
bracketing33,34 and “start” and “stop” neurons that are invariant to a wide range of motivational, 
kinematic, and environmental variables 36,35. Here, we show that task-bracketing and start/stop signals 
arise naturally from our model framework in two well-studied tasks, one involving their temporal34 

and the other their representational characteristics36. 

In the first study, as rodents learned to navigate a T-maze (Fig. 3A), neural activity in dorsolateral 
striatum and infralimbic cortex became increasingly crystallized into temporal patterns known as 
“task-brackets”34. For example, although neural activity was highly variable before learning; after 
learning the same neurons phasically fired at the start of a behavioral sequence, as the rodent turned 
into and out of the critical junction, and finally at the final goal position where reward was obtained. 
Based on the optimal modularization for the T-maze state-space (Fig. 3A inset), we examined 
spike trains from a simulated neurons whose firing rates scaled with local planning entropy (see 
supplementary material) and this showed that initially (i.e. without modularization, Fig. 3C right) 
the firing rate did not reflect any task-bracketing but following training (i.e. optimal modularization, 
Fig. 3C left) the activity exhibited clear task-bracketing driven by the initiation or completion of a 
local planning process. These result show a good qualitative match to the empirical data (Fig. 3B, 
from Ref. 34) showing that task-bracketing patterns of activity can be explained as the result of 
module start/stop signaling and planning according to an optimal modular decomposition of the 
environment. 

In the second study, rodents engaged in an operant conditioning paradigm in which a sequence of eight 
presses on a left or right lever led to the delivery of high or low rewards36. After learning, recordings 
from nigrostriatal circuits showed that some neurons encoded the initiation, and fewer appeared to 
encode the termination, of these action sequences. We used our framework to compute the optimal 
modularization based on an approximation to the task state-space (Fig. 3D) in which the rodent could 
be in many natural behavioral states (red circles) prior to the start of the task. Our model found 
that the lever action sequences were extracted into two separate modules (blue and green circles). 
Given a modularization, a hierarchical entropy coding strategy uses distinct neural codewords for the 
initiation and termination of each module (Section 2.6). Importantly, we found that the description 
lengths of start codes was longer than that of stop codes (Fig. 3F). Thus, an efficient allocation of 
neural resources predicts more neurons encoding start than stop signals, as seen in the empirical data 
(Fig. 3E). Intuitively, more bits are required to encode starts than stops in this state-space due to the 
relatively high level of entropic centrality of the “rest” state (where many different behaviors may 
be initiated, red circles) compared to the final lever press state (which is only accessible from the 
previous Lever press state and where the rodent can only choose to enter the magazine or return to 
“rest”). These results show that the start and stop codes and their representational characteristics arise 
naturally from an efficient representation of the optimally modularized state space. 

5 Discussion 

We have developed the first framework in which it is possible to derive state-space modularizations 
that are directly optimized for the efficiency of decision making strategies and do not require 
prior knowledge of the optimal policy before computing the modularization. Furthermore, we 
have identified experimental hallmarks of the resulting modularizations, thereby unifying a range 
of seemingly disparate results from behavioral and neurophysiological studies within a common, 
principled framework. An interesting future direction would be to study how modularized policy 
production may be realized in neural circuits. In such cases, once a representation has been established, 
neural dynamics at each level of the hierarchy may be used to move along a state-space trajectory via 
a sequence of attractors with neural adaptation preventing backflow38, or by using fundamentally 
non-normal dynamics around a single attractor state39. The description length that lies at the heart of 
the modularization we derived was based on a specific planning algorithm, random search, which 
may not lead to the modularization that would be optimal for other, more powerful and realistic, 
planning algorithms. Nevertheless, in principle, our approach is general in that it can take any 
planning algorithm as the component that generates description lengths, including hybrid algorithms 
that combine model-based and model-free techniques that likely underlie animal and human decision 
making40. 
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1 Modularized description length of planning
 

The global planning DL, L(P|MG), can be easily computed after marginalizing over the in
ternal states of each module. Defining PS (PG) to be the prior over start (goal) modules 

PS(Mi) :=  
P 

s2Mi 
Ps 

⇣
PG(Mi) :=

P 
g2Mi 

Pg 

⌘
, then L(P|MG) =  PS HG PG 

T where HG is 

the trajectory entropy across modules. In order to compute the local planning DL: L(P|Mi) :=  
(PS(Mi) + PV(Mi) + PG(Mi))

P 
si,gi2Mi 

Psi Pgi L(si, gi|Mi) we must first establish the induced 
priors over “sub-tasks” (si, gi) within the module Mi. The probability that a state si 2 Mi serves 
as a sub-start state is the probability that si is the entrance state to Mi given a module transition 
into Mi at the global level. Conversely, a state gi 2 Mi is a sub-goal state if it is the last transient 
state within Mi before a trajectory transitions out of the module Mi. These probabilities, as well as 
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Figure 4. Two state-space modularizations exhibiting the relationship between state-space structure 
and modularization compression are shown. Following modularization, the first state-space is broken 
up into four modules corresponding to the two large “room” as well as a split in each room. Even 
in an a relatively homogeneous state-space (such as each of these rooms) planning complexity is 
minimized if the space is partitioned into equally sized modules. In the second example, the “corridor” 
is extracted exhibiting the partitioning of the state-space into modules with relatively constant entropic 
centralities. In the final column, we simulate 200 random walks and state-goal trajectories in each 
state-space and compute compression factors (2.4). Two types of state sequences are considered, 
namely a random walk is a random sequence of states while a state-goal trajectory is a sequence of 
states generated by a planning policy. The set of trajectories is a subset of the set of walks since the 
goal state cannot be repeatedly visited in a trajectory. The first example shows that the first MDP 
is relatively incompressible while the second exemplifies the fact that minimizing modularized DL 
specifically compresses solutions to problems (s, g) (i.e. trajectories) in the environment. 

the probability PV(Mi) that Mi is transiently accessed under the global directive, can be computed 
precisely based on the fundamental matrix of a Markov chain (see Section 2). A special case, which 
is computed separately, is when the start and goal states are within the same module. This contributes 
no additional DL at the global level but is added as a separate cost in the local planning entropy 
calculations. 

In order to compute the optimal modularization, we currently use a brute-force algorithm, which takes 
around <10 mins to modularize the Soho state-space (55 states, 134 transitions). In future work, we 
aim to incorporate more sophisticated optimization techniques such as parallelization, greedy submod
ular optimization and genetic algorithms. Code is available online at https://github.com/dmcnamee. 

2 Module transition probabilities 

We constructed (see Section 2.5, main text) the fundamental tensor D of the global planning process 

[D]SV G := (I - TG)-1 (1)SV 

where S indicates a start module, V a transient module, and G a goal module. We record a useful 
property of the fundamental tensor. The probability that a module V is transiently accessed given a 
goal module G and a start module S is1 

⇥
DSV G ⇥ 

(
diagSV D

-1 )⇤ 
(2)SV G SV 

2 

https://github.com/dmcnamee


This expression, weighted by the prior probabilities of tasks (S, G) gives the prior probability of a 
module being accessed over all tasks 

PV (MV ) =
X

[PS DSV G ⇥ 
(
diagSV D

-1 ) 
PG

T ]SV (3)SV G
S 

We obtain the transient module transition probabilities P (Mi ! Mj ) by considering the global 
goal-module absorbing chain with fundamental matrix NG = (I - TG)-1 and summing over all 
global tasks (S, G) weighted by the task priors PS and PG: 

P (Mi ! Mj ) =  P (Mj |Mi)P (Mi) =
⇥
PS DSV G ⇥ 

(
diagSV D

-1 ) 
PG

T ⇥ T |G?,G

⇤ 
(4)SV G ij 

2.1 Across-modules transitions and sub-start probabilities 

Let us consider two connected modules, Mi and Mj , in our modularization M and consider the 
probability that an entrance state sj 2 Sj is accessed from start state si 2 Si. It is known from the 
theory of finite Markov chains (Theorem 3.5.4 in Ref. 1) that 

P (sin = sj , Mj |sin = si, Mi) =
⇥
NMi ⇥ T |Mi,Mj 

⇤ 
(5)

ij 

where T |Mi,Mj denotes the restriction of T to the row-components corresponding to the states of 
Mi and the column-components of Mj . Summing over the states of si 2 Mi gives the probability 
P (sin = sj , Mj |Mi) that sj 2 Mj is an sub-start state given that the global directive has identified a 
transition from Mj . 

2.2 Within-modules transitions and sub-goal probabilities 

We assume that we have an entrance state sa and an exit state sb in a module Mi. The probability of 
sb being an exit state from the module is the probability that it is transiently accessed before exiting 
to module Mj (Theorem 3.5.7 in Ref. 1) 

P (sout = sj |sin = si, Mi) =
⇥
NMi ⇥ diag(NMi )

-1 ⇥ T |Mi,Mj 

⇤ 
(6)

ij 

3 Alternate formulation of trajectory entropy 

We use the formulation for trajectory entropy in a Markov chain established in Ref. 2. This refines 
and extends a previous expression derived in Ref. 3 which we record here: 

H := K - K̂ + s̄ -1
L(v1) (7) 

where we have 

H
⇤ - L(v1)

K := (8)
xI - T + A

K̂ij = Kjj , 8j 

H
⇤ :=ij H(Ti·) 

-1
L(v1)ii = s̄ H(T )i 

L(v1)ij = 0  , 68i = j 

Aij = s̄j 

We verified numerically that these two different formulations matched in a wide range of Markov 
chains. 

4 Representational cost of modularization 

We quantify the cost of representing a modularization via the expected description length of randomly 
producing a particular modularization4,5. Such as process has two components, namely the specifica
tion of the number of modules nM (which must be between 1 and the cardinality of the state-space 
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|S|) and the assignment of each state to a module. 

L(M) =  - log(P (M)) 
= - log(P (M|nM )) - log(P (nM ))"

Y 
# 

= - log P (s 2 M |nM ) - log(P (nM )) 
s2S 

= 
X 

log(nM ) + log(|S|) 
s2S 

= |S| log(nM ) + log(|S|) (9) 

5 Experimental datasets and analysis details 

5.1 Spatial navigation task 

Functional magnetic resonance imaging (fMRI) was used to study the brain activity of human subjects 
engaged in spatial navigation in London’s Soho (Fig. 1C, main text). All subjects were students 
of University College London and therefore tended to be highly familiar with the environment. In 
addition, subjects were evaluated to ensure that they had prior knowledge of the environment, after 
completing a training process in which (1) they studied maps and photographs of the state-space 
locations, (2) they were given a guided tour of the area, and (3) practised the task that they would 
perform in the scanner6. 

On each trial, after first orienting the subjects at the start state and identifying the goal state, subjects 
watched first-person-view movies of travel along novel start-goal trajectories through Soho. Half 
of the trials required subjects to make decisions as to how to best proceed in order to complete the 
task. Specifically, prior to arriving at a junction in the state-space, participants indicated with a button 
press which subsequent direction to travel in. In control trials, subjects were instructed to press a 
button indicating a particular direction of travel rather than choosing themselves. 

The fMRI data was analyzed with general linear models containing regressors corresponding to time 
series of centrality measures (betweenness, closeness, and degree) and changes thereof. The key 
result (see Section 3.2, main text), is that hippocampal activity was specifically sensitive to changes 
in degree centrality (as opposed to closeness or betweenness). Further details can be found in the 
publication6 of this study. 

5.2 Task-bracketing simulations 

We simulated the spiking activity of Poisson neurons whose firing rate was driven by the initialization 
and termination of modules, and local planning entropy (within modules), in a non-modularized, 
and an optimally modularized version, of the T-maze state-space (Fig. 3A inset) used in Ref. 7. We  
assumed a baseline firing rate of 5KHz, a refractory period of 10ms, and a neural gain of 20 relating 
the encoded variables (start/stop, planning) to the firing rate in order to match the range of empirically 
observed firing rates7. After generating a trajectory, we resampled the time course of task variable 
signals to match the sampling frequency of 1000KHz. Fig. 3C (main text, modularized on the left) 
shows the perievent time histogram of 10 simulated trials of the ensemble activity. The median firing 
rate was equalized across the two conditions. We assumed that, on arrival at the goal, rodents shifted 
to a new behavioral module corresponding to the consummation of the reward which transiently 
increased planning entropy in addition to a module stop signal. Without this, there is still a clear peak 
at the goal arrival timepoint but with a lower average firing rate. 

5.3 Operant conditioning state-space 

We designed a model state-space of the operant conditioning paradigm used in Ref. 8 incorporating 
the fixed-ratio reward schedule relating sequences of 8 lever presses to reward delivery. In addition to 
the behavioral states (“lever press”, “magazine entry”, “lick”) directly related to the action-outcome 
contingencies, rodents in the chamber may engage in a range of additional behaviors thus we included 
a range of alternative behaviors in the state-space model, namely “grooming”, “resting”, “freezing”, 
and “exploring”. All states connected by the dashed lines are directly accessible from one another. 
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For example, we assume the rodent can be in a “lick” state directly following an “explore” state 
without transitioning through “rest”. The efficient modular decomposition displayed in Fig. 3D (main 
text) does not strongly depend on the structure of the state-space adjacent to the “rest” state and 
is mainly dependent on the natural nonuniform task distribution whereby the only rewarding goal 
state is “licking when reward is present” and the rodent is initialized in the “rest” state. The plotted 
description lengths correspond to the initialization and termination of the “lever” action sequences 
(as modules at the “global” level) under the stationary transition distribution. 

6 Comparison with other measures of planning complexity/difficulty 

Planning description length L(P|M) is a scalar measure which allows MDPs to be ranked in 
terms of the complexity of finding, or encoding, a solution based on a planning process P given a 
modularization M. Note that this is distinct from the formal computational complexity theory of 
MDPs as a problem domain which classes them as P -complete9. In a set of 17 small MDPs, designed 
to span a variety of state-space topologies and task priors, we compared planning DL against a variety 
of alternative planning complexity and difficulty measures, namely (1) the expected shortest path 
length 10, (2) the expected path length (generated by the planning process), (3) the number of states in 
the MDP, (4) the number of transitions in the MDP, and (5) the average degree centrality. See Fig. 5 
for scatter plots for the first four measures (see Fig. 1G, main text for a plot of entropic centrality 
versus degree centrality). Of these, we found that expected path length (R2 = 0.69), the number 
of transitions (R2 = 0.46), and the average degree centrality (R2 = 0.62), significantly explained 
variability in PDL in a linear model (p <  0.05). 

Although expected path length is significantly correlated with planning description length in our set 
of MDPs, it is easy to generate counter-examples to this effect. Consider an MDP consisting solely of 
deterministic “forward” transitions along a “corridor” of states from a start state at one end to a goal at 
the other (i.e. without actual choices). Here, DL agrees with intuition, assigning minimal complexity, 
independent of corridor length, while expected path length assigns a larger complexity, increasing 
with corridor length. This is exemplified by the data point in Fig. 5 with the lowest planning DL (DL 
equals 0, expected path length equals 6). Therefore, one can expect that state-space modularizations 
based on expected path length will “spend” modules on breaking up deterministic state sequences 
where no planning is required. Mathematically, the critical difference is the multiplication by local 
entropy in the planning DL measure. This sets to zero the contribution of transient states which do 
not contribute to overall trajectory entropy. 

7 Comparing efficient modularizations and optimal behavioral hierarchies 

The “optimal behavioral hierarchy”11 (OBH) approach seeks to find the state-space decomposition 
which “best explains” the optimal trajectories. This objective is formalized as a bayesian model 
selection over the possible state-space hierarchies: 

P (behavior|hierarchy) / 
X 

P (behavior|hierarchy, ⇡)P (⇡|hierarchy) (10) 
⇡2⇧ 

where ⇧ is the set of all behavioral policies which can be generated from a particular hierarchy. 

This approach is distinct from that of efficient modularization (EM). First, OBH requires the optimal 
policy to be known before it can be applied. If used with a planning policy (such as random search) 
instead, as we do, it does not result in a meaningful modularization. The modularization would 
depend on the intrinsic stochasticity of planning via the generation of the behavior variable. Even if 
one were to optimize Eq. (10) based on the average or minimal paths of an ensemble of planning 
behaviors, such an optimized hierarchy would compress the description of such planned trajectories 
well but not necessarily compress the generation of them. 

Second, the objectives are fundamentally different in that even if one was to use the optimal policy 
with EM, the modularization can be quite different from that drawn from an OBH (for examples, 
see Fig. 6). This is because we directly optimize for the memory requirements (see main text) 
whereas OBH-optimized representations would still require large capacity for maintaining the “meta
actions” of the optimal policy (in long-term memory), and for storing the resulting trajectories 
(in working memory). To illustrate this numerically, we established the optimal trajectories ⇡opt 
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Figure 5. We computed planning description length for a variety of deterministic MDPs. For each 
plot, MDPs are gray-scaled in order of increasing planning DL. Significant linear relationships are 
indicated by a least-squares line. Planning description length is measured in nats. We describe 
the planning difficulty measure along the x-axes in each panel. Note that, for expected shortest 
path length and expected path length, the expectation of the corresponding variables under the task 
distribution P (s, g) was used. Expected shortest path length. The optimal trajectories for every 
task (s, g) was computed and the number of states in each trajectory counted (including the goal 
state). Expected path length. The expected number of steps until arrival at the goal state under 
a random search planning process was computed. Number of states. The number of states in the 
MDP (independent of task prior). Number of transitions. The number of transitions in the MDP 
(independent of task prior). 

(i.e. minimal paths) for all 16 ⇥ 15 = 240 tasks (s, g) in MDP 2 (Fig. 6), and computed the 
total description lengths for each trajectory: (1) LEM , based on the partition defined by efficient 
modularization, and (2) LOBH , based on the partition computed via optimal behavioral hierarchy. For 
all trajectories, the total description length based on EM was smaller with the average difference being
1 P

(LOBH (⇡opt) - LEM (⇡opt)) = 181.69nats. A similar analysis of trajectories generated by a 240 
1random policy ⇡rand led to the same conclusion with an average difference of 

P
(LOBH (⇡rand) -240 

LEM (⇡rand)) = 1901.33nats. In a behavioral experiment, one could test whether the distributions 
of compression factors exhibited by subjects while planning in a calibrated set of MDPs and task 
distributions, were better fit by EM or OBH partitions. 

8 Entropic centrality and state-space bottlenecks 

Strongly modular decision-making environments tend to have “bottleneck” states at the interfaces 
between modules. From a graph-theoretic point of view, these are states which bridge between 
clusters of highly connected states. For planning, they serve as important “waypoints” since many 
trajectories must necessarily travel through them12. Bottlenecks are often the focus of “subgoal” 
discovery algorithms, based on which, temporally extended action sequences or “options” may be 
defined13. Behavioral experiments have shown11 that human subjects can identify such bottleneck 
states despite only having experienced local state-state transitions and never observed the global, 
“bird’s eye” view of the entire state-space as displayed in Fig. 7A,C. 
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Figure 6. Maximally efficient modularizations and optimal behavioral hierarchies11 are presented for 
two distinct MDPs designed to highlight differences in the corresponding partitions. For both MDPs, 
we assume the agent may be required to navigate between any two states with equal probability. 
Partitions are color-coded. MDP 1. This homogeneous “open space” is decomposed in the efficient 
modularization framework but does not contain an optimal behavioral hierarchy. The log model 
evidence log P (behavior|OBH) (Eq. 10) in favor of the OBH hierarchy compared to the EM 
hierarchy is log P (behavior|OBH) - log P (behavior|EM) = 168.25. MDP 2. The transition 
structure has been altered to reflect a more modular structure (the number of states remains the same). 
EM extracts the “corridor” as a distinct module however the OBH has only two modules with some 
redundancy (the color-gradient states may be assigned, together, to either module). In this case, 
log P (behavior|OBH) - log P (behavior|EM) = 33.08. 

It appears that efficient modularization tends to partition the environment based on changes in the 
entropic centrality of states (see main text). Here, we examine whether the magnitude of the entropic 
centrality gradient across the state-space can serve as a measure of state “bottleneckness” in an MDP 
using a discrete analogue of the Laplacian operator14. In Fig. 7A,C, we exhibit the state-space graphs 
of two MDPs previously used for human behavioral experiments of state bottleneck identification11. 
One can observe, from a global viewpoint, that both of these state-spaces consists of two “rooms” 
linked by a “corridor”. Note that, in Fig. 7A, all states have the same degree centrality of three 
(the number of states connected to a given state). Despite this, subjects successfully11 identified 
the corridor states as bottlenecks in a “bus-stop placement” task (see Ref. 11 for descriptions of the 
behavioral experiments). 

We compute the magnitude |rEv| of the entropic centrality gradient rEv at state v analogously to 
2the discrete “umbrella”1 Laplacian operator14 � based on the relation r = �: 

s 
|rEv | = 

X 
Tnv(En - Ev)2 (11) 

n2N1(v) 

where N1(v) is the neighbourhood of states which are directly connected, via nonzero transitions, 
to state v and T is the planning transition structure of the environment (Eq. 1, main text). After 
computing entropic centrality gradient magnitudes at each state for each task (s, g), |rEv| is the 
expectation of this random vector over the task prior P (s, g). 

In Fig. 7B,D, we scale the node sizes of the environments in Fig. 7A,C according to |rEv | based on 
a uniform distribution of tasks (s, g) revealing how |rEv| captures the degree to which a state is a 

1This particular discrete approximation to the Laplacian operator is appropriate for our situation since the 
state-space has little geometric structure. If, for example, these state-spaces were embedded in a Riemannian 
manifold, this would induce a measure of the angle between states. Variants of Eq. 11, which incorporate more 
geometric structure, could be used in such a scenario. 
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Supp. Fig.“SolwayBotvinick Fig. 2c/d”
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Figure 7. A. MDP used for behavioral experiments in Solway et al. (see Fig. 2C there). Importantly, 
this MDP has been designed such that each of the ten states has the same degree centrality (three) 
despite the fact that there is a “bottleneck” between the upper and lower “rooms”. B. Node sizes 
are scaled according to entropic centrality gradient magnitude (Eq. 11) of the corresponding state 
showing that these scalar values serve as a measure of state “bottleneckness”. The two state with the 
highest entropic centrality gradient magnitude are highlighted in grey. Interestingly, our measure �E 
also assigns the second highest value to the states which seemed to be the second most consistent 
choice of subjects when probed to identify bottleneck states. C. MDP used for behavioral experiments 
in Solway et al. (see Fig. 2D there). Note the clear bottleneck state between the “rooms”. D. Node 
sizes are scaled according to the gradient magnitude of entropic centrality (Eq. 11). The scale is 
reduced compared to B in order to account for the larger number of states which globally increases 
entropic centrality. The state with the highest entropic centrality gradient magnitude is highlighted in 
grey. Our measure assigns the highest value to the bottleneck state and the second highest value to 
the states of high connectivity positioned at the center of the two rooms. 

bottleneck in the global planning structure of the environment. This measure could aid in the discovery 
of subgoals, especially given that it does not require the pre-computation of the optimal policy as 
with previous methods15. Furthermore, behavioral experiments could be performed in order to test 
whether the apparent sensitivity of humans to state-space bottlenecks is reflective of a wider cognitive 
state-space representation strategy based on gradients in entropic centrality. Potentially one could 
implicitly infer such cognitive representations from compression factor distributions since explicitly 
probing subjects to reveal their perceived bottlenecks may be confounded by other considerations. 
For example, subjects may reasonably place a “bus-stop” specifically at the center of a long directed 
corridor in order to minimize the expected path length of state-goal trajectories even though this does 
not correspond to a bottleneck state and does not alter the complexity of planning. 
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