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Summary

Current models of motor learning posit that skill acquisition
involves both the formation and decay of multiple motor
memories that can be engaged in different contexts [1–9 ].
Memory formation is assumed to be context dependent, so
that errors most strongly update motor memories associ-
ated with the current context. In contrast, memory decay is
assumed to be context independent, so that movement in
any context leads to uniform decay across all contexts. We
demonstrate that for both object manipulation and force-
field adaptation, contrary to previous models, memory
decay is highly context dependent. We show that the decay
of memory associated with a given context is greatest for
movements made in that context, with more distant contexts
showing markedly reduced decay. Thus, both memory for-
mation and decay are strongest for the current context. We
propose that this apparently paradoxical organization
provides a mechanism for optimizing performance. While
memory decay tends to reduce force output [10, 11], memory
formation can correct for any errors that arise, allowing the
motor system to regulate force output so as to bothminimize
errors and avoid unnecessary energy expenditure. The mo-
tor commands for any given context thus result from a bal-
ance betweenmemory formation and decay, whilememories
for other contexts are preserved.

Results and Discussion

Motor learning has been extensively studied using tasks in
which reaching movements are perturbed by applying loads
to the arm (for example, [12–16]) or by altering visual feedback
of the hand (for example, [17–20]). With practice, subjects
adapt to such perturbations, forming motor memories that
are expressed as adaptive changes in the motor commands
to the arm. This memory formation is context specific. For
example, learning in one movement direction or for one object
orientation shows limited generalization to other directions or
orientations [1, 7, 13, 21–24].

Current models that capture this pattern of motor memory
formation [1–9] typically include two update terms that
describe how the adaptation state (z), which represents motor
memories, changes from one trial (n) to the next (n + 1):

zn+1 = azn +bnen: (Equation 1)

In this case, z is a vector of elements that represent the
adaptation state associated with different contexts (for

example, different movement directions). The scalar retention
factor (a) determines how much of the adaptation state is car-
ried over from trial to trial. Its value is always less than one,
such that the adaptation state tends to decay passively from
one trial to the next. The learning rate vector (bn) determines
how strongly the error (en) from the current trial is used to up-
date the adaptation states on the next trial. The learning rate
vector is context dependent, such that errors have the greatest
influence on the state associated with the current context, with
diminishing influence on states associated with increasingly
distant contexts.
Current models [1–6, 8, 9] thus make two key assumptions.

First, error-driven memory formation is context dependent;
second, memory decay is context independent. Whereas
numerous studies have provided empirical support for
context-dependent memory formation [1, 7, 13, 21–24], the
assumption that memory decay is context independent has
never been directly tested. In the current study, we used a
novel experimental approach to examine the effect of context
on the decay of motor memories in both an object manipula-
tion and a force-field adaptation task, thus testing the
assumption of context independence for the first time.

Context-Dependent Decay for Familiar Object Dynamics
In total, 72 university students participated in the study after
giving their informed consent. A local ethics committee
approved the study, and subjects were naive to its purposes.
Subjects grasped the handle of a robotic manipulandum [25]
and rotated a virtual object while attempting to keep the grasp
point stationary [7, 24] (Figure 1A; see also Figure S1 available
online). The task required subjects to produce a compensatory
force to oppose the force associated with the circular motion
of the mass (F in Figure 1A). On a given trial, subjects rotated
the object 40! clockwise (CW) or counterclockwise (CCW) be-
tween two targets. The performance error was measured as
the peak displacement (PD) of the handle (Figure 1B). Adapta-
tion during the task involves forming a motor memory of the
magnitude of the compensatory force required to stabilize
the handle. The greatest adaptation is observed at the local
orientation at which the dynamics are experienced, with
limited generalization to novel (untrained) orientations [7, 24].
This pattern of context-dependent memory formation can be
reasonably well capturedwith the standard state-spacemodel
(Equation 1) that includes a generalization function tuned to
the orientation of the object [7].
To examine the potential effect of context on the decay of

motormemory, we used error-clamp trials to prevent displace-
ment of the handle, thereby clamping the kinematic error (en) to
zero (Figure 1C). This eliminates error-dependent memory for-
mation (second term in Equation 1), allowing us to isolate
memory decay (first term in Equation 1). Blocks of error-clamp
trials were presented across a range of contexts (object orien-
tations), and motor memory was examined before and after
each block (Figure 2A).
Two groups of subjects performed an initial exposure block

at a single exposure orientation: 180! (G180!, exposure at
180!; see Figure 2A) and 0! (G0!, Figure S2A). Consistent
with our previous studies [7, 24], subjects rapidly adapted to
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as shown by a progressive decrease in PD across trials (yellow
panel, Figures 2B and S2B). Subjects then performed a series
of probe blocks, each consisting of 20 error-clamp trials pre-
sented at a particular object orientation (green panel in Figures
2A and S2A). After each probe block, subjects were retested in
the original exposure orientation for 18 (reexposure) trials to
examine the decay of memory as a function of context (blue
panel in Figures 2A and S2A).

During error-clamp probe trials, the compensatory force
produced by subjects can be measured. The level of adapta-
tion was quantified as the peak compensatory force divided
by the force that would fully compensate for the object dy-
namics (Figures 2B and S2B). Consistent with our previous
studies [7, 24], adaptation measured during probe blocks var-
ied systematically across orientations and was highest at the
exposure orientation (Dq = 0! in Figures 2C and S2C),
decreasing progressively as the relative probe orientation
(Dq) increased.

PD immediately before each probe block did not vary signif-
icantly with probe orientation, showing that subjects were in a
comparable state of adaptation before each probe block (de-
tails of statistical tests are reported in the figure legends). PD
on reexposure trials, immediately after each probe, provides
our test for context-dependent memory decay. Current
models predict that reexposure PD should not vary as a func-
tion of probe orientation. However, there was a highly signifi-
cant effect of probe orientation on reexposure PD. Specifically,
PD was greatest following error-clamp probe trials at the
exposure orientation (Dq = 0!, Figures 2D and S2D) and
decreased progressively as the relative probe orientation
(Dq) increased. This indicates that memory decay was greatest
during probe trials at the initial exposure orientation, with

progressively less decay occurring at more distant probe
orientations.
Because the above result cannot be reproduced by existing

models (orange trace in Figure 2D), we developed a newmodel
that included context-dependent terms for both memory for-
mation (bn) and decay (an):

zn+1 = an1zn +bnen: (Equation 2)

In the new model, a context-dependent function associated
with the retention factor (an) allows memory decay to vary with
context (the 1 operator denotes elementwise vector
multiplication).
We tested three variants of the model (see Supplemental

Experimental Procedures). In each model, the context-depen-
dent learning rate (bn) was implemented by a scaled and offset
Gaussian centered on the current context [7]. In the firstmodel,
memory decay was assumed to be context independent,
consistent with previous studies (Equation 1). The second
and third models were variants of the context-dependent
decaymodel (Equation 2). In thesemodels, the retention factor
(an) was also implemented by a scaled and offset Gaussian (as
for bn). In the first context-dependent decay model, the gener-
alization functions for memory formation (bn) and memory
decay (an) had the same widths (the same SD of the underlying
Gaussians). In the second context-dependent decay model,
the widths of memory formation and decay were independent.
The three models were fit to the experimental data, and the

Bayesian information criterion (BIC) was used for model selec-
tion (see Supplemental Experimental Procedures). The BIC
analysis strongly favored the model that allowed different
widths for the generalization functions associated with
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Figure 1. The Object Manipulation and Force-
Field Adaptation Tasks

(A) Top view of the object manipulation task.
Subjects grasped the handle of a robotic manip-
ulandum and rotated a virtual object (green)
clockwise and counterclockwise (inset) between
visually presented targets (purple), while keeping
the handle as still as possible within the central
home region (gray). Rotating the object gener-
ated forces (F, red arrow).
(B) On exposure trials, the forces associated with
rotating the object caused the handle to displace.
The peak displacement (PD) of the handle pro-
vided a measure of error on each trial.
(C) On error-clamp trials, the manipulandum
simulated a 2D stiff spring (red arrows), which
prevented displacement of the handle (PD = 0).
(D) Top view of the force-field adaptation task.
Subjects grasped the handle of a robotic manip-
ulandum and reachedwith a virtual cursor (green)
toward visually presented targets (purple). A
velocity-dependent force field (F, red arrows) dis-
placed the hand during the movement. Move-
ment to the 0! target is shown (inset shows the
180! target).
(E) On exposure trials, the applied forces caused
the hand to displace during the movement. The
PD of the hand relative to a straight line between
the starting position and the target provided a
measure of error on each trial.
(F) On error-clamp trials, the manipulandum
simulated a mechanical channel between the
starting position and the target (red arrows),
which prevented perpendicular displacement of
the hand (PD = 0).
See also Figure S1.
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memory decay andmemory formation (see red and bluemodel
fits in Figures 2 and S2). Examining the generalization func-
tions in the model (Figure 3; see also Supplemental Experi-
mental Procedures and Tables S1 and S2) shows that
context-dependent memory decay had broader generalization
(sb = 51!; Figure 3A) than context-dependent memory forma-
tion (sa = 31!; Figure 3B).

Context-Dependent Decay for Novel Dynamic Force Fields
Numerous studies have examined motor memories using
a task in which velocity-dependent force fields are applied
to the hand [12–16, 26–29] (Figure 1D). The target-directed
movements made by subjects are initially perturbed by the
force field (Figure 1E). However, subjects adapt over the
course of many trials with movements approaching
their original unperturbed trajectories. We also examined
context-dependent decay in this well-studied task, using
our error-clamp paradigm (see Supplemental Experimental
Procedures).

Two groups of subjects performed an initial exposure block
reaching for a target in a single direction: 180! (G180!, Fig-
ure 4A) and 0! (G0!, Figure S4A). Adaptation to the force field
was indicated by a progressive decrease in displacement of
the hand (PD) from a straight line between the start position

and the target (yellow panel, Figures 4B and S4B). Subjects
then performed a series of probe blocks, which consisted
of 30 error-clamp trials (green panel in Figure 4A). During
error-clamp trials, the manipulandum simulated a mechanical
channel that constrained hand movement to a straight line be-
tween the start position and the target (Figure 1F). As with the
object manipulation task, error-clamp trials ensured that the
kinematic error was zero and eliminated context-dependent
memory formation. Probe blocks were presented at the
0! and 180! targets, thus representing the exposure (Dq = 0!)
and a nonexposure (Dq = 180!) target. After each probe block,
subjects were retested (reexposed) at the original exposure
target to examine the decay of memory. In addition to error-
clamp trials during probe blocks, subjects performed two
error-clamp trials at the exposure target immediately before
and after each probe block. This allowed us to measure the
adaptation state of subjects.
We estimated the level of adaptation during probe blocks by

dividing the peak force exerted by subjects on the channel wall
[30] by the force which would have fully compensated for the
force field. Consistent with previous studies, we found that
adaptation was greater at the exposure target (probe Dq =
0!) compared to the nonexposure target (probe Dq = 180!)
for both groups (G180!, Figure 4C; G0!, Figure S4C).

A
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Figure 2. Context-Dependent Decay during Ob-
ject Manipulation for G180!

(A) The experimental paradigm (trial counts in
brackets). Subjects were initially exposed to the
full object dynamics at the exposure orientation
(180!) for 46 trials (E180!, yellow panel). They
then performed 15 cycles of alternating probe
and reexposure blocks. Probe blocks (green
panel) consisted of 20 error-clamp trials pre-
sented at one of five probe orientations. Probe
orientations included the original exposure orien-
tation (Dq = 0!) and four nonexposure orientations
(Dq > 0!; probe object at 157.5! is omitted for
clarity). Reexposure blocks (blue panel) con-
sisted of 18 trials with full object dynamics at
the original exposure orientation (R180!).
(B) Composite trial series for peak displacement
(PD; upper panels, black trace) and adaptation
(lower panels, blue trace) for G180!, including
the context-dependent decay model fit (red and
dark blue lines; pink and gray shading shows
95% confidence limits for model fit). E, exposure
(yellow panel); P, probe (green panels); R, reex-
posure (blue panels). Dq! is probe orientation
relative to exposure.
(C) Generalization of adaptationmeasured during
probe blocks (green panels in A and B) after
exposure at 180! (black symbols are mean and
SE across subjects; red symbols are context-
dependent decay model; black and red lines are
half Gaussians fit to experimental and model
data, respectively). The p value is from a single-
factor ANOVA (F[4, 55] = 18.21). Dq! is probe
orientation relative to exposure.
(D) Decay of adaptation measured during re-
exposure blocks, plotted as in (C). Reexposure
PD (mean over first eight trials immediately after
probe) is measured in the original exposure
orientation (R180!; see blue panels in A and B).
Larger values indicate greater amounts of decay
have occurred in the preceding probe block
(Dq!). Orange trace shows uniform decay

predicted by the context-independent decay model. The p value is from a single-factor ANOVA (F[4, 55] = 9.83). Preprobe PD (mean over last eight trials
immediately before probe; data not shown) did not vary significantly with probe Dq! (ANOVA F[4, 55] = 0.01, p > 0.9).
See Figure S2 for equivalent analysis of G0!.
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After subjects completed 30 error-clamp probe trials at
either the exposure target or the nonexposure target, the
retention of adaptation was measured using two error-clamp
trials at the exposure target (orange panel in Figure 4A). Reten-
tion was significantly smaller (indicating greater decay)
following probe trials at the exposure target (probe Dq = 0!)
compared to the nonexposure target (probe Dq = 180!) for
both groups (Figures 4D and S4D). In contrast, adaptation at
the exposure target immediately before each probe block did
not differ significantly between probe targets for either group.

The PD data confirms results obtained for adaptation
described above. Specifically, PD immediately before each
probe block did not vary significantly with probe target for
either group, whereas reexposure PD immediately following
each probe block did vary significantly for both groups (Fig-
ures 4E and S4E). These results indicate that context-depen-
dent decay is also a feature of motor memories associated
with learning novel force fields.

In both experiments, we used error-clamp trials to effec-
tively remove kinematic errors. However, the error clamp
was implemented with stiff springs, and very small kinematic
errors remained. In one group of subjects in each experiment,
probe context had a systematic effect on these small errors
(see Supplemental Experimental Procedures). Previous
studies have shown that small errors occurring during error-
clamp trials do not drive deadaptation [30]. However, to verify
that these small errors did not influence our findings and test
their generality when subjects were exposed to the task dy-
namics at multiple contexts, we performed two control exper-
iments. In the first control experiment, we manipulated the
magnitude of the small errors associated with error-clamp tri-
als by varying the spring stiffness. In the second control exper-
iment, we exposed subjects to the dynamics at all probe orien-
tations and varied the spring stiffness to equalize the small
errors between probe contexts. In both cases, the context-
dependent pattern of memory decay was still observed (see
Supplemental Experimental Procedures and Figure S3).

Discussion

We used a novel experimental approach to demonstrate that,
contrary to previous assumptions [1–6, 8, 9], the decay of mo-
tor memory is highly context dependent. Specifically, the
decay of memory associated with a given context is greatest
for movements made in that context and decreases progres-
sively for movements made in more distant contexts.

The finding that both memory formation and decay are
greatest for the current context may seem paradoxical.

However, we suggest that it provides a mechanism for opti-
mizing performance. Inmotor tasks, memory decay is typically
associated with reduced force output [10, 11]. Decay can thus
be advantageous, because it tends to prevent the motor
system from employing unnecessarily high force output. For
example, when manipulating a given object, decay would
prevent the application of unnecessarily high grip force [31].
However, decay will be disadvantageous if it results in
performance errors. For example, an object will slip in the
hand if grip force is reduced too much. These errors can be
corrected by memory formation. For example, small slips
(errors) during object manipulation result in an adaptive
increase in grip force [32, 33]. Thus, simultaneous memory
decay and formation, both of which are highest in the current
context, allow the motor system to constantly probe whether
its force output is unnecessarily high while still maintaining
low error. An additional advantage of context-specific decay
is that it preserves memories associated with distant contexts
(for example, the required grip force for a different object).
Indeed, it is difficult to regardmemory decay at distant, nonac-
tive contexts as anything but detrimental, especially because
memory formation in these contexts cannot balance memory
decay.
The context-specific effects we observe are graded such

that similar contexts are also subject to the combination of
memory formation and decay, whereas more distant contexts
are unaffected. This enables themotor system to also optimize
motor commands associated with contexts that are related.
For example, when manipulating a particular object, it may
be beneficial to optimize the motor memories associated
with other similar objects (objects with similar mass or fric-
tional properties). Our finding that the generalization function
for memory decay is wider than for memory formation sug-
gests that the balance between memory formation and decay
may tend to favor decay for intermediate contexts. While more
distant contexts are protected from both the formation and
decay of memory, intermediate contexts may be subject to
small amounts of decay. However, we note that although the
difference in tuning width appears large (w20!), simulations
(not shown) suggest that the amount of decay occurring at in-
termediate contexts is small and rapidly corrected by memory
formation when a particular intermediate context becomes
active.
We have shown that context-dependent memory decay is

present in two complementary tasks, one involving manipu-
lating an object with familiar dynamics and the other
involving reaching under novel dynamics. Showing context-
dependent decay for both cases is important, as each task

A B Figure 3. Gaussian Generalization Functions and
Model Parameters for the Independent-Widths,
Context-Dependent Decay Model

(A) Model parameters for the retention factor (an
in Equation 2) in the context-dependent decay
model. The red trace shows the Gaussian gener-
alization function obtained from fitting the mean
subject data for both groups. The pink shading
shows the 95% confidence limits obtained from
a bootstrap analysis (see Supplemental Experi-
mental Procedures for details).
(B) Model parameters for the learning rate (bn in
Equation 2) in the context-dependent decay
model, plotted as in (A).
See also Tables S1 and S2 for additional
modeling results and Figure S3 for control exper-
iments.
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may engage different adaptation processes [7]. Specifically,
during object manipulation, the structure of the dynamics
is familiar and corresponds to commonly manipulated tools
(such as hammers). Because subjects appear to have preex-
isting knowledge of such familiar dynamics [24], this is
an example of parametric learning, in which only the mass
of the object is unknown. In contrast, the force-field reaching
task corresponds to an object with highly unusual dynamics.
As such, adaptation requires learning both the structure (the
equations relating motion to force) and the parameters
(the values for the particular constants in those equations).
The observation of context-dependent memory decay in
both cases suggests that it may be a general mechanism in
sensorimotor learning.
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Figure S1, Related to Figure 1. The Virtual-Object-Manipulation Task  
(A) Side view of the virtual reality system. Subjects are seated and grasp the handle of the 
WristBOT robotic manipulandum. An LCD monitor and mirror presents a virtual image of the 
object (green) and the task in the plane of movement. The image of the object tracks the 
translation and rotation of the handle in real-time and the WristBOT generates the forces and 
torques associated with the simulated object dynamics.  
(B) The virtual object and visual feedback of the task. The task involves rotating the object 
(green) 40° from the starting angle (light grey bar) to a target angle (purple bar) while 
maintaining the circular handle of the object (the grasp point) within the home region (light 
grey disc). A clockwise trial is shown (the subsequent counter-clockwise trial is shown in the 
inset). The object is simulated as a mass (m) on the end of the mass-less rigid rod (r). 
Rotation (θ) generates a torque ( ) associated with the moment of inertia of the object. 
Rotation also generates a force (F) associated with the circular motion of the mass.  
(C) Top view showing visual feedback of the virtual object (green), which was projected over 
the subject’s hand in the plane of movement. Visual feedback was consistent with grasping 
the object at its circular base. Dotted line shows subject’s mid-sagittal plane which was 
aligned with the hand and the vertical rotation axis of the object. Inset shows top view of 
subject’s hand overlaid with five different orientations of the object. 
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Figure S2, Related to Figure 2. Context-Dependent Decay during Object Manipulation 
for G0°  
(A) The experimental paradigm (see main-text Figure 2 for details and an equivalent analysis 
of G180°).  
(B) Composite trial series for peak displacement (PD; upper panels black trace) and 
adaptation (lower panels blue trace) for G0° (exposure at 0°) including the context-dependent 
decay model fit (red and dark blue lines; pink and grey shading shows 95% confidence limits 
for model fit). E=exposure (yellow panel), P=probe (green panels), R=re-exposure (blue 
panels). Δθ° is probe orientation relative to exposure.  
(C) Generalization of adaptation measured during probe blocks (green panels in A and B) 
after exposure at 0° (black symbols are mean and SE across subjects; red symbols are 
context-dependent decay model; black and red lines are half Gaussians fit to experimental 
and model data, respectively). P-value for single-factor ANOVA (F[4,55]=5.07). Δθ° is probe 
orientation relative to exposure.  
(D) Decay of adaptation measured during re-exposure blocks, plotted as in C. Re-exposure 
PD (mean over first 8 trials immediately after probe) is measured in the original exposure 
orientation (R180°; see blue panels in A and B). Larger values indicate greater amounts of 
decay have occurred in the preceding probe block (Δθ°). Orange trace shows uniform decay 
predicted by context-independent decay model. P-value for single-factor ANOVA 
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(F[4,55]=5.07). Pre-probe PD (mean over last 8 trials immediately before probe; data not 
shown) did not vary significantly with probe Δθ° (ANOVA F[4,55]=0.25, p>0.9). 
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Figure S3, Related to Figure 3. Control Experiments  
(A) Control Experiment 1 (see Supplemental Experimental Procedures for details). Subjects 
were initially exposed to the full object dynamics at the exposure orientation (E180° yellow 
panel). They then performed probe blocks consisting of 20 error-clamp trials (green panel) 
presented at 1 of 2 probe orientations (0° and 180°) and with 1 of 3 spring constants (k=30 
N/cm, 40 N/cm, or 50 N/cm). After each probe block, subjects were re-exposed to the full 
object dynamics at the exposure orientation for 18 trials (blue panel).  
(B) Control Experiment 2 (see Supplemental Experimental Procedures for details). Subjects 
were exposed to the full object dynamics at 0° and 180° (E0° and E180°, yellow panels). They 
then performed probe blocks consisting of 20 error-clamp trials also presented at 0° and 180° 
(green panel). Probe spring constants (k0° and k180°) were adjusted so that error-clamp 
displacements were matched between the 2 probe orientations. After each probe block, 
subjects were re-exposed to the object dynamics at 180° for 16 trials (R180°, blue panel).  
(C) Results for Control Experiment 1. Peak displacement (PD) during probe blocks (blue 
symbols on green panel) and subsequent re-exposure blocks (black symbols on blue panel) 
for the 2 probe orientations ( ) and the 3 error-clamp stiffness levels. Symbols are means 
and SE across subjects. P-values are for statistical tests, as indicated (single-factor ANOVAs 
and paired two-tailed t-tests; see text for details; ns=non-significant).  
(D) Results for Control Experiment 2. PD during probe blocks (blue symbols on green panel) 
and subsequent re-exposure blocks (black symbols on blue panel), plotted as in (C). 
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Figure S4, Related to Figure 4. Context-Dependent Decay during Force-Field Adaptation for 
G0°  
(A) The experimental paradigm (see main-text Figure 4 for detail and equivalent analysis of 
G180°).  
(B) Composite trial series for peak displacement (PD; upper panels black trace) and 
adaptation (lower panels blue trace) for G0° (exposure at 0°; means across subjects; grey 
shading is SE). E=exposure (yellow panel), P=probe (green panels), R=re-exposure (blue 
panels). Δθ° is probe target angle relative to exposure target. Orange panels show sequence 
of 2 post-probe retention trials (data points omitted for clarity).  
(C) Adaptation measured during probe blocks (green panels in A and B) after exposure at 0° 
(mean and SE across subjects). P-value for two-tailed paired t-test (t[11]=6.21). Δθ° is probe 
target angle relative to exposure target.  
(D) Retention of adaptation measured during 2 error-clamp trials at the original exposure 
target immediately after probe blocks (see orange panels in A and B), plotted as in C. Smaller 
values indicate greater amounts of decay have occurred in the preceding probe block (Δθ°). 
P-value for two-tailed paired t-test (t[11]=2.56). Pre-probe adaptation (data not shown) did not 
differ significantly between probe targets (t[11]=1.58, p>0.1).  
(E) Decay of adaptation measured during re-exposure blocks, plotted as in C. Re-exposure 
PD (mean over first 8 trials immediately after probe) is measured at the original exposure 
target (see blue panels in A and B). Larger values indicate greater amounts of decay have 
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occurred in the preceding probe block (Δθ°). P-value for two-tailed paired t-test (t[11]=2.23). 
Pre-probe PD (mean over last 8 trials immediately before probe; data not shown) did not differ 
significantly between probe targets (t[11]=0.41, p>0.6). 
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Table S1, Related to Figure 3. Model Parameter Values and 95% Confidence Limits 
 
 

Parameters values are for fitting the independent-widths context-dependent decay model 
(Model 3) to the mean trial series data across both groups of subjects (G0° and G180°) in 
Experiment 1 (see main-text Figure 2 and supplemental Figure S2). Confidence limits (CL) 
were calculated using a sub-sampling bootstrap (see Supplemental Experimental Procedures 
for details). 
 
 
 
 
 
Table S2, Related To Figure 3. The R2 Values for Model Fits  
 

Model Description R2 Sub-sample R2 BIC% 

1 Context-independent decay model 0.8956 0.8726±0.0101 0.0% 

2 
Context-dependent decay model 
with common tuning widths 0.9074 0.8840±0.0095 10.7% 

3 
Context-dependent decay model 
with independent tuning widths 0.9104 0.8868±0.0091 89.3% 

The models were fit to the mean trial series data across both groups of subjects (G0° and 
G180°) in Experiment 1 (see main-text Figure 2 and supplemental Figure S2). The mean sub-
sample R2 values (±SD) for model fits associated with the sub-sampling bootstrap are also 
provided. The BIC% values indicate the percentage of sub-samples for which each particular 
model was selected by the BIC analysis (see Supplemental Experimental Procedures for 
details). 

Parameter Value 95% CL 

a0° 0.9862 0.9823 - 0.9890 

a180° 0.9983 0.9951 - 0.9999 

σa 51.4° 36.7 - 67.3° 

b0° 0.1679 0.1416 - 0.1995 

b180° 0.0000 0.0000 - 0.0221 

σb 31.2° 26.6 - 44.8° 
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Supplemental Experimental Procedures 
 
Subjects 
In total, 72 university students participated in the study after giving their informed 
consent. A local ethics committee approved the study and subjects were naïve to its 
purposes.  
 
Experiment 1―Object Manipulation 
The first experiment was designed to examine the context-dependent pattern of 
decay across multiple object orientations after exposure to the familiar dynamics of 
an object at a single orientation. The virtual object manipulation task has been 
previously described [7, 24]. Briefly, subjects grasped the handle of the WristBOT 
robotic manipulation with their right hand (Figure S1-A) [25]. The WristBOT simulated 
the dynamics (forces and torques) of a hammer-like object, which consisted of a 
mass on the end of a rigid rod (Figure S1-B). A virtual reality display system provided 
visual feedback associated with the object and the task. The task involved rotating 
the object 40° between two visually-presented targets, with clockwise (CW) and 
counter-clockwise (CCW) rotations alternating across consecutive trials (Figure S1-
B). Subjects were asked to maintain the handle as still as possible within the central 
home region as they rotated the object. 

The object consisted of a point mass (1% of the subject’s body mass) at the 
end of an 8 cm rigid rod (Figure S1-B). The task required subjects to produce a 
torque to rotate the object as well as a compensatory force to stabilise the handle. 
The compensatory force opposes the force associated with the circular motion of the 
mass (F in Figure S1-B; see also main-text Figure 1A), which would otherwise 
displace the handle. Full details of the object dynamics and the required 
compensation have been previously published [7, 24]. The visually displayed object 
(Figure S1-B) consisted of a circular handle (radius 0.5 cm) attached to a 4 cm 
square mass by an 8 cm rod (width 0.2 cm). The position and orientation of the 
object was determined by the position and orientation the WristBOT handle. The 
home region was a 1 cm radius disc and the start and end targets for rotation were 
oriented rectangles (0.6 by 2.5 cm) continuous with the home region (Figure S1-B). 

Subjects performed blocks of trials consisting of CW and CCW rotations of 
the object between two targets. The angular midpoint between the targets defined 
the orientation of the object for that block of trials. The object could be presented and 
different orientations in each block (Figure S1-C). A trial began with the handle 
stationary within the home region and the rod of the object aligned with the start 
target. The movement was cued by a tone and the appearance of the second target. 
The trial ended when the subject had rotated the object to reach the second target. 
Subjects were required to make the movement within 400 ms. They were warned if 
they took longer and had to repeat the trial if the movement exceeded 500 ms. Rest 
breaks (45 s) were given every 3-5 minutes in all experiments. 

Subjects experienced the torque associated with rotating the object on all 
trials. However, the forces generated by the manipulandum could vary according to 
three different trial types. On exposure trials, subjects experienced the forces 
associated with rotating the object (that is, they experienced the full dynamics of the 
object). Importantly, the forces generated on exposure trials cause the handle to 
displace (main-text Figure 1B), unless subjects generate a compensatory force to 
prevent displacement. On error-clamp trials (main-text Figure 1C), the manipulandum 
simulated a stiff two-dimensional spring centred on the handle position at the start of 
the trial (the spring constant was 40 N/cm unless otherwise stated). Error-clamp trials 
effectively eliminate kinematic errors [30] and prevent error-driven adaptation. Error-
clamp trials also allow the compensatory forces generated by subjects to be 
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measured. Finally, on zero-force trials, the manipulandum did not produce any forces 
and the handle was free to move. 

Subjects were randomly assigned to two groups (n=12 in each group) which 
were exposed to the dynamics of the object at either 0° (group G0°) or 180° (group 
G180°). Before the main experiment, subjects completed a familiarisation phase 
which consisted of 40 zero-force trials presented in blocks of 4 trials for each of 5 
orientations (2 repeat blocks for each orientation). The 5 orientations presented 
during the familiarisation phase were the same as those presented during probe 
blocks for the main experiment (see below). 

In the main experiment (Figure S2-A and main-text Figure 2A), subjects were 
first exposed to the object at 0° (group G0°) or 180° (group G180°) for 46 trials. They 
were then presented with multiple probe blocks which consisted of 20 error-clamp 
trials presented at 1 of 5 possible probe orientations. The 5 probe orientations were 
chosen for each group such that the relative probe orientations (Δθ relative to the 
exposure orientation) were the same for each group (probe Δθ of 0°, 22.5°, 45°, 90° 
and 180°). As such, for the 0° exposure group (G0°), probe orientations were 0°, 
-22.5°, -45°, -90° and 180° (Figure S2-A) and for the 180° exposure group (G180°), 
probe orientations were 180°, -157.5°, -135°, -90° and 0° (main-text Figure 2A). After 
each probe block, subjects were re-exposed to the full dynamics of the object for 18 
trials at the original exposure orientation. Importantly, because re-exposure trials are 
presented at the original exposure orientation, they allow us to quantify the decay of 
memory which has occurred during the preceding probes at each orientation. As 
such, each block of 18 re-exposure trials is characterised by the relative orientation 
of the probe (Δθ) which immediately precedes it. 

Probe orientations were presented in a pseudo-random order and each probe 
orientation was presented exactly once within a sequence of 5 probe blocks. 
Subjects performed 3 sequences of the 5 probe orientations (that is, 3 repeats per 
probe orientation). The experiment thus consisted of 15 cycles (5 probe orientations 
x 3 repeats per orientation = 15 cycles; Figure S2-A and main-text Figure 2A). 
Composite trial series for each subject were constructed by averaging trial data (see 
below) across the 3 repeats for each probe orientation and sorting probe blocks in 
order of increasing relative probe orientation (Δθ). Composite trial series consisted of 
the 46 initial exposure trials (yellow panels in Figure S2-B and main-text figure 2B) 
followed by 38 trials for each probe block. These 38 trials consisted of the 20 error-
clamp trials at a given probe orientation (green panels in Figure S2-B and main-text 
figure 2B) followed by the 18 re-exposure trials (blue panels in Figure S2-B and 
main-text figure 2B). Composite trial series thus consisted of 236 trials (46 + 5 x 
(20+18) = 236). 
 
Data Collection and Analysis 
The position and orientation of the handle and the forces and torques generated by 
the manipulandum were recorded at 1000 Hz for offline analysis using Matlab (R14, 
The MathWorks Inc., Natick, MA, USA). Two measures characterized the trial-by-trial 
performance of the subjects during the task. On exposure trials, the peak 
displacement (PD) of the handle was measured, relative to its position at the start of 
the trial (main-text Figure 1B). On error-clamp trials, displacement of the handle was 
minimised (main-text Figure 1C), and instead the compensatory forces produced by 
subjects were measured. To quantify adaptation, we divided the peak force produced 
by the subject on error-clamp trials by the force which would have perfectly 
compensated for the perturbing dynamics of the object. As such, this measure has a 
value of 1 if subjects produce forces which exactly compensate for the dynamics of 
the object. 

Composite trial series of PD and adaptation trial data were constructed for 
each subject as described above. Derived measures were also calculated from the 
PD and adaptation data associated with each probe orientation. Specifically, the 
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generalization of adaptation at each probe orientation was characterized by 
averaging adaptation data across the first 8 error-clamp trials for each probe (Figure 
S2-C and main-text Figure 2C). The decay of adaptation associated with each probe 
orientation was characterized by averaging PD data across the first 8 re-exposure 
trials which immediately followed each probe (Figure S2-D and main-text Figure 2D). 

All statistical tests were performed using Matlab. All t-tests were paired and 
two-tailed and all ANOVAs were single factor. 
 
The Models 
We fit various state-space adaptation models to our data. The adaptation state is 
represented by a vector z which has elements corresponding to the different contexts 
(object orientations). The different possible contexts are represented by a context 
vector, θ, which has elements that correspond to the different visual orientations of 
the object. On the n th trial, the context is given by the index cn such that the object 
orientation is  and the adaptation state associated with this context is . We 
use the superscript (i) to refer to the i th element of a vector.   

For our experiment, the state (z) and context vector (θ) have 16 elements 
covering all possible object orientations in 22.5° steps, such that θ(i) = 22.5i, and cn is 
the index (i) in these vectors (between 1 and 16) which corresponds to the current 
context. The state vector updates from one trial (n) to the next (n+1) according to:  

 
    (S1) 

 
where en is the scalar kinematic error, bn is a vector mediating memory formation, an 
is a vector mediating memory retention (and hence decay) and  denotes element-
wise multiplication of the vectors. Importantly, the vectors an and bn can vary from trial 
to trial depending on the current context cn.  

The kinematic error en (the peak displacement or PD of the handle), is 
calculated for exposure trials as follows: 

 
     (S2) 

 
where d is vector of compliances for the different contexts. Values for d for different 
contexts (object orientations) have been determined in a previous study [7] and we 
used these values in the current study. Perfect compensation (zero error) for the 
current context, cn, occurs when . When  is less than 1, compensation is 
incomplete resulting in a non-zero error.  

To simulate an experimental trial series, z was initialised to be the zero vector 
and only the time series of contexts { c1, c2, c3, … } and trial type is input to the model. 
Given the context and the current state of z, the error can be simulated (Equation S2) 
and used to update z on exposure trials (Equation S1). On error-clamp trials, en is set 
to zero so that only the an vector affects the state update (Equation S1). 
 
Model Variants 
We consider 3 variants of the state-space adaptation model given by Equation S1. In 
all models, the learning-rate vector bn is implemented by a generalization function 
which mediates context-dependent memory formation by weighting the influence of 
errors according to the context in which they occur. Specifically, the elements of bn 
are set according to a scaled and offset Gaussian function centred on the current 
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orientation of the object (the current context). The form of the function is determined  
by 3 parameters w1, w2, and σb such that the i th element of b is: 
 

   (S3) 
 

where  is the standard Normal probability density function: 

    (S4) 
 

which is applied to x (having taken the circular modulo). Therefore (for fits with w2>0) 
the greatest update (learning) occurs for the current context with a decaying 
influence of errors at progressively more distant contexts. For consistency with 
previous studies, when reporting model parameters, we give b(0°) and b(180°), which are 
the values of b for the current context and the ±180° extremes, respectively. 

The 3 model variants which were fit to the experimental data differed with 
regards to the form of the retention vector an, as follows. 
 
1. Context-independent decay. In this model, all elements of an are the same and 
independent of context:  
 

     (S5) 
 
thus implementing uniform decay across all contexts. This is equivalent to previous 
models which have assumed context-independent decay (see main text for 
references). Model 1 has 4 parameters (3 associated with the learning-rate vector bn 
in Equation S3 plus the scalar retention factor a in Equation S5). 
 
2. Context-dependent decay with common tuning widths. In this model, an is context-
dependent and (like bn) is implemented as a scaled and offset Gaussian: 
 

    (S6) 
 
As with bn, when reporting model parameters for an, we report a(0°) and a(180°). In this 
variant of the context-dependent decay model, σa and σb (in Equation S6 and S3, 
respectively) are constrained to be equal. Model 2 thus has 5 parameters. Note also 
that because w4 can be negative, this model allows a(0°) to be less than a(180°). In this 
case, decay at the current context would be greater than the decay at more distant 
contexts. 
 
3. Context-dependent decay with independent tuning widths. In this variant of the 
context-dependent decay model, the parameters specifying the standard deviations 
for the memory formation and retention generalization functions (σa and σb in 
Equation S6 and S3, respectively) could vary independently. Model 3 thus has 6 
parameters. 
 
Model Fitting 
The three models were fit to the trial series data from Experiment 1. As with previous 
studies (Smith et al. 2006), the mean trial series across subjects was used for fitting 
because individual subject data is usually too noisy to obtain reliable fits. Specifically, 
we fit the trial series obtained experimentally for PD (measured on exposure trials) 
and adaptation (measured on error-clamp trials) to the simulated trial series for each 
model. For each probe context, we first averaged the data across the 3 repeats for 
each subject and then averaged these across subjects. The data were then used to 
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construct a single trial series from the smaller to largest probe orientation (Figure S2-
B and main-text Figure 2B) and used to fit the model. This approach is justified 
because the PD immediately before probe blocks did not vary with probe orientation 
and therefore the order has only negligible affect on the fits.  

Whereas kinematic error can be measured on exposure trials, on error-clamp 
trials the feedforward component of adaptation is measured. The adaptation state z 
in the model includes this feedforward component (feedforward compensatory 
forces) as well as components associated with limb impedance and feedback 
responses to kinematic error. We model the adaptation z as a linear function of the 
feedforward component (zf): 

 
     (S7) 

 
where k2 is expected to be greater than 1. The parameters k1 and k2 were fit to the 
data. 

Note that the measures on exposure trials (PD in cm) and error-clamp trials 
(adaptation is a dimensionless ratio) are in different units. To allow the model to be fit 
to the data in the same units (so as to ensure that trial type did not bias the fit) we 
performed all model fitting in error (PD) space. That is, on exposure trials, PD is 
measured experimentally and compared directly to the error (e) in the model. In 
contrast, for error-clamp trials from the model we use Equation S2 to determine the 
error (PD in cm) that would have occurred had the handle been free to move (that is, 
on a zero-force trial). For error-clamp trials from the experiment, we measured the 
feedforward adaptation (zf) and use Equation S7 convert zf, to z and Equation S2 to 
convert z to error (e). Therefore, we could generate a trial series of errors for both the 
experiment and the model and optimise the model parameters to minimize the mean 
squared difference between the two trial series. 

The models were concurrently fit to the trial series for both groups of subjects 
(G0° and G180°). The parameters k1 and k2 (Equation S7) were fit separately for 
each group whereas all other parameters were common to both groups. Model 
parameters were estimated by a non-linear least-squares procedure performed in 
Matlab (lsqnonlin). 

Confidence intervals for parameter estimates and the model trial series were 
calculated using a sub-sampling bootstrap (Politis et al. 1999). Specifically, the 12 
subjects for each experiment were used to generate 495 unique sub-samples, each 
consisting of 8 subjects. The model was fit separately to the mean trial series data for 
each of the 495 unique sub-samples. The 95% confidence intervals were calculated 
as the 2.5 and 97.5 percentile values from the distributions for the parameters and 
the model trial series obtained across the 495 individual fits. 
 
Model Selection 
Model selection was performed using the Bayesian Information Criterion (BIC). The 
BIC for a particular model combines a “reward” for the goodness of fit with a “penalty” 
for the number of free parameters: 
 

   )ln()ln( 2 nknBIC e     (S8) 
 
where σ2

e is the variance in the residual errors of the fit, k is the number of free 
parameters and n is the number of data points (the number of trials). Taking the 
difference in BIC values for two competing models approximates half the log of the 
Bayes factor (Kass and Raftery 1995). A BIC difference of greater than 4.6 (a Bayes 
factor of greater than 10) is considered to provide strong evidence in favour of the 
model with the lower BIC value (Jeffreys 1998). 



 13 

The BIC analysis was performed when fitting the models to the mean trial 
series data across all subjects and concurrently to both groups (G0° and G180°). The 
same BIC analysis was also applied separately to each sub-sample generated during 
the bootstrap (described above). 
 
Supplemental Model Results 
As reported in the main text, the BIC analysis (described above) selected the 
context-dependent decay model in which the widths for the generalization of memory 
decay and memory formation are independent (Model 3 as described above). 
Specifically, the difference in BIC values between the selected independent-widths 
model and the rejected single-width context-dependent decay (Model 2) and context-
independent decay models (Model 1) were 9.6 and 60.1, respectively. This provides 
strong evidence in favour of the independent widths model (Jeffreys 1998). 

The best-fit values for the parameters associated with memory formation (b0°, 
b180°, σb) and memory decay (a0°,  a180°, σa) in the independent-widths model, along 
with the 95% confidence limits, are shown in Table S1 (see also main-text Figure 3). 
The R2 values for fitting the 3 models to the mean trial series across both groups of 
subjects are shown in Table S2.  

In addition to performing the BIC analysis on model fits to the mean trial 
series data, we also performed a separate BIC analysis for each bootstrap sub-
sample (see Model Fitting in the Supplemental Experimental Procedures for full 
details). In the bootstrap analysis, the models were fit individually to 495 unique 8-
subject sub-samples drawn from the 12 subjects (see Table S2 for the mean R2 
values for model fits across the 495 sub-samples). Specifically, the models were fit to 
the mean trial series for each sub-sample across both groups (G0° and G180°). The 
BIC analysis was applied separately to each bootstrap sub-sample in order to assess 
the robustness of the model selection result. The context-independent decay model 
was rejected by the BIC sub-sample analysis in all cases, and in 89.3% of sub-
samples, the independent-widths model (Model 3) was selected (see Table S2). 
Moreover, when the tuning widths for memory decay (σa) and memory formation (σb) 
were compared on a sample-by-sample basis, the width for memory decay was wider 
than for memory formation in all cases, consistent with the results obtained for the 
entire subject pool. 
 
Experiment 2―Force-Field Adaptation 
The second experiment was designed to examine context-dependent decay during 
adaptation to a velocity-dependent curl-field. Subjects grasped the handle of a vBOT 
manipulandum [25] and made 12 cm point-to-point reaching movements between 
targets which were presented at either 0° or 180° (main-text Figure 1D). Whereas in 
the first experiment, the context was the orientation of the object, in the second 
experiment, the context was the movement direction (target angle). Subjects were 
randomly assigned to two groups (n=12 in each group) which were exposed to the 
force-field at the 0° target (group G0°; Figure S4-A) or the 180° target (group G180°; 
main-text Figure 4A). As such, subjects adapted to the force-field in one context (the 
exposure target) and decay was subsequently examined during movements made to 
the exposure target and the non-exposure target. 

Subjects performed an initial 12 trials in the null field followed by 100 
exposure trials during which the manipulandum generated a velocity-dependent curl-
field (main-text Figure 1D). After each movement to the exposure target (0° for group 
G0° and 180° for group G180°), the vBOT passively returned the subject’s hand to 
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the starting position ready for the next trial. During exposure trials the forcegenerated 
at the handle ( ][ yx FF ) depended on the velocity of the hand ( ][ yx �� ), as follows:  

 

                                            (S9) 
 

The direction of the field was determined by k which was -0.13 and +0.13 
-1-1 scmN  for clockwise (CW) and counter-clockwise (CCW) fields, respectively. 

Within each group the field direction was balanced so that half the subjects 
experienced a CW field and the other half experienced a CCW field. 

As with Experiment 1, after the initial exposure to the task dynamics in a 
single context, subjects performed error-clamp probe blocks during which context-
dependent decay was examined. Specifically, after the 100 initial exposure trials, 
subjects performed probe blocks each consisting of 30 error-clamp channel trials 
(main-text Figure 1F) at the 0° or 180° targets (Figure S4-A and main-text Figure 4A). 
On these trials the manipulandum simulated a mechanical channel (wall stiffness 40 
N/cm) between the starting position and the target [30]. Each probe block was 
followed by 30 re-exposure trials at the original exposure target (0° for G0° or 180° 
for G180°). In addition, two error-clamp channel trials at the exposure target were 
performed immediately before and after each probe block. A total of 4 probe blocks 
were performed (2 repeats for each probe target), with the order randomised for each 
subject. The paradigm is illustrated for each group by the trial series in Figure S4-B 
(G0°) and main-text Figure 4B (G180°). 

Performance on each trial was quantified by measuring the peak 
displacement (PD; main-text Figure 1E). PD was defined as the maximum 
perpendicular deviation of the hand from a straight line between the start position and 
the target. On error-clamp channel trials, the level of adaptation was quantified as the 
force exerted by subjects into the wall of the channel, at peak velocity, divided by the 
force which would fully compensate for the field. Composite trials series were 
constructed (as in Experiment 1) by averaging probe blocks across the multiple 
repeats for each probe target and then across subjects (Figure S4-B and main-text 
Figure 4B). As in Experiment 1, context-dependent decay was assessed by 
analysing PD during the re-exposure trials immediately following the probe (blue 
panel in Figure S4-A and main-text Figure 4A). Specifically, PD was averaged across 
the first 8 trials of each re-exposure block and across the 2 repeat blocks for each 
probe target. In addition, pre- and post-probe adaptation for each probe target was 
determined from the average of the 2 error-clamp channel trials at the exposure 
target immediately before and after each probe block. Specifically, the mean across 
pairs of pre- and post-probe error-clamp trials and then across the 2 repeat blocks for 
each probe target was calculated for each subject. 
 
 
 
Control Experiments 
In experiments 1 and 2, error-clamp trials were implemented by simulating a stiff 
spring with the robotic manipulandum, such that kinematic errors were minimised. 
Although the spring was very effective in minimising deviations of the handle (the 
mean PD across both groups during probe trials for Experiment 1 was 0.10±0.03 cm 
and for Experiment 2 was 0.20±0.04 cm), in one group of subjects for each 
experiment these small displacements varied systematically with probe context. 
Specifically, for group G180° in Experiment 1, probe PD varied with object orientation 
over a very small but significant range (PD range 0.03±0.01 cm, ANOVA 
F[4,55]=0.68, p>0.6 for G0°; PD range 0.05±0.02 cm, F[4,55]=3.19, p<0.05 for 
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G180°). Similarly, for group G0° in Experiment 2, probe PD varied with movement 
direction over a small but significant range (PD range 0.09±0.06 cm, paired t-test 
t[11]=5.06, p<0.0004 for G0°; PD range 0.03±0.03 cm, paired t-test t[11]=0.72, p>0.4 
for G180°). To determine whether these small errors influenced our results, we 
performed two control experiments. In both experiments, we varied the stiffness of 
the error-clamp spring in order to manipulate the magnitude of the small errors 
associated with probe blocks.  
 
Control Experiment 1―Variable Error-Clamp 
Methods 
The first control experiment was similar to group G180° from Experiment 1, except 
that probe trials were presented at only 2 orientations (0° and 180°) and the error-
clamp spring constant was varied across different probe blocks (30, 40 and 50 N/cm; 
Figure S3-A). As in Experiment 1, subjects (an additional n=12) first completed 46 
exposure trials at 180° followed by a number of cycles of probe and re-exposure 
blocks (Figure S3-A). In this case, subjects completed 18 cycles of probe blocks (2 
probe orientations x 3 spring constants x 3 repeats = 18 cycles). The results were 
analysed as for Experiment 1. 
 
Results 
Results for Control Experiment 1 are summarised in Figure S3-C. As expected, 
varying the error-clamp spring stiffness had a systematic effect on the small 
displacements which occurred during probe blocks at both the exposure (180°) and 
the non-exposure (0°) orientations. Specifically, at the exposure orientation, probe 
PD varied significantly with spring stiffness (PD range 0.08±0.02 cm; ANOVA 
F[2,33]=8.90, p<0.001; blue symbols on green background for Δθ=0° in Figure S3-
C). Similarly, at the non-exposure orientation, probe PD also varied significantly with 
spring stiffness (PD range 0.04±0.02 cm; ANOVA F[2,33]=5.74, p<0.01; blue 
symbols on green background for Δθ=180° in Figure S3-C). However, despite these 
systematic differences in probe displacements, re-exposure PD immediately after the 
probe did not vary with spring stiffness for either the exposure (ANOVA F[2,33]=0.01, 
p>0.9; black symbols on blue background for Δθ=0° in Figure S3-C) or non-exposure 
probes (ANOVA F[2,33]=0.69, p>0.5; black symbols on blue background for Δθ=180° 
in Figure S3-C). Moreover, when the small displacements associated with probe 
blocks were matched between the exposure and non-exposure orientations (paired t-
test p>0.8 on PD for 50 N/cm at Δθ =0° versus 30 N/cm at Δθ =180°, as indicated for 
blue symbols on green background in Figure S3-C), re-exposure PD was still 
significantly greater for Δθ=0° versus Δθ=180° probes (paired t-test t[11]=3.60, 
p<0.005, as indicated for black symbols on blue background in Figure S3-C). Results 
for Control Experiment 1 thus show that small systematic differences in probe PD 
comparable to those observed in Experiment 1 do not lead to systematic effects on 
re-exposure PD. Moreover, even when probe PD are matched between contexts, 
context-dependent decay is still observed. 
 
Control Experiment 2―Dual-Context Exposure 
Methods 
The second control experiment was similar to the Control Experiment 1, except that 
subjects were exposed to the dynamics of the object at both probe orientations. This 
allowed us to test whether the context-dependent effects found in Experiment 1 were 
still observed when subjects were exposed to the dynamics of the object at more 
than one orientation. In addition, we also adjusted the spring stiffness on a subject-
by-subject basis in order to closely match the kinematic errors (PD) between the two 
probe orientations. This provided a further control for the possible effects of small 
kinematics errors associated with probe trials. 
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Twelve additional subjects were exposed to the object at 2 orientations (180° 
and 0°) and probe blocks were also presented at these same orientations. The 
experiment consisted of an exposure phase followed by a probe phase. In the 
exposure phase, subjects were exposed to the full dynamics of the object at 0° and 
180° in alternating blocks of 16 trials which were each repeated 4 times. After each 
pair of blocks at 0° and 180°, 4 error-clamp trials were presented randomly at one of 
the exposure orientations. These error-clamp trials allowed the peak forces 
associated with each orientation to be determined. At the end of the exposure phase, 
this force data was analysed so that the spring constants for the subsequent probe 
phase could be individually set for each subject. Specifically, the spring constants k0° 
and k180° (Figure S3-B) where calculated such that probe displacements were 
matched between the 2 probe orientations. 

During the probe phase of the experiment, as in previous experiments, blocks 
of error-clamp trials were used to probe for context-dependent decay. However, in 
this case, each block of 20 error-clamp probe trials (green panel in Figure S3-B) was 
immediately preceded by 2 blocks of 16 exposure trials, first at 0° and then at 180° 
(yellow panels in Figure S3-B). The subsequent probe blocks were pseudo-randomly 
presented at either 0° or 180°. The re-exposure block which followed each probe 
block was always presented at 180° (blue panel in Figure S3-B). As such, context-
dependent decay was always determined relative to 180°, as in Control Experiment 
1. The results were analysed as for Experiment 1. 
 
Results 
Results for Control Experiment 2 are summarised in Figure S3-D. Adjusting the 
spring constants (k0° and k180° in Figure S3-B) for each subject, based on the forces 
measured at each orientation during the exposure phase, successfully matched 
probe displacement (paired t-test t[11]=0.03, p>0.9, as indicated for blue symbols on 
green background in Figure S3-D). However, despite experiencing the same 
kinematic errors during probe blocks at each orientation, and despite exposure to the 
dynamics of the object at both probe orientations, re-exposure PD was larger 
immediately following Δθ=0° probe blocks compared to Δθ=180° probe blocks 
(paired t-test t[11]=3.87, p<0.005, as indicated for black symbols on blue background 
in Figure S3-D). Thus, as with the first control experiment, context-dependent decay 
was still observed in Control Experiment 2. 

The results of Control Experiment 2 are also important because they rule out 
an alternative account for what we have interpreted as context-dependent decay. In 
this alternative, during error-clamp probe trials (where the error is zero), subjects may 
attempt to return to the non-zero error which they had experienced during the 
exposure trials immediately preceding the probe. This may occur, for example, if 
subjects develop a forward model during exposure trials which predicts a non-zero 
error. Importantly, such a model would be most developed for contexts close to 
where the errors are experienced (that is, the exposure context). This could lead to 
our observed context-dependent effects, which would not be decay, but rather an 
active error-driven process that is most developed for the exposure context. In 
Control Experiment 2, subjects were exposed to the dynamics at both 0° and 180°, 
and probe blocks were also presented at these two orientations. As such, any 
process attempting to restore errors to pre-probe values would apply equally to both 
probe orientations (as subjects would have similar expectations for a non-zero error 
at both). As a result, when subjects are exposed to the dynamics at the probe 
orientations, context-dependent decay should be abolished. However, this was not 
the case. Context-dependent decay was still observed (Figure S3-D), thus ruling out 
this alternative hypothesis. 
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