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Summary

Humans develop rich mental representations that guide their
behavior in a variety of everyday tasks. However, it is un-
known whether these representations, often formalized as
priors in Bayesian inference, are specific for each task or
subserve multiple tasks. Current approaches cannot distin-
guish between these two possibilities because they cannot
extract comparable representations across different tasks
[1-10]. Here, we develop a novel method, termed cognitive
tomography, that can extract complex, multidimensional
priors across tasks. We apply this method to human judg-
ments in two qualitatively different tasks, “familiarity” and
“odd one out,” involving an ecologically relevant set of stim-
uli, human faces. We show that priors over faces are struc-
turally complex and vary dramatically across subjects, but
are invariant across the tasks within each subject. The priors
we extract from each task allow us to predict with high preci-
sion the behavior of subjects for novel stimuli both in the
same task as well as in the other task. Our results provide
the first evidence for a single high-dimensional structured
representation of a naturalistic stimulus set that guides
behavior in multiple tasks. Moreover, the representations
estimated by cognitive tomography can provide indepen-
dent, behavior-based regressors for elucidating the neural
correlates of complex naturalistic priors.

Results

Human performance in a wide range of individual perceptual
tasks has been shown to be close to that of an ideal observer
that combines sensory evidence with prior expectations ac-
cording to the rules of Bayesian inference [11]. Moreover,
many perceptual illusions have been shown to arise from the
influence of priors in the face of sensory uncertainty or ambi-
guity [12]. Thus, characterizing priors for natural stimuli and
understanding how they are used is central to the study of hu-
man perception.

The priors we use for simple one-dimensional variables,
such as speed of movement for visual objects [3] or direction
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of sunlight [13], have each been carefully characterized in the
context of a specific perceptual task. However, surprisingly
little is known about the nature of priors for complex, high-
dimensional real-life stimuli, such as faces, and whether
such priors depend on the task in which they are employed.
The task dependence of priors, in particular, addresses a
fundamental assumption of the Bayesian paradigm that has
so far gone untested: to allow for efficient learning and power-
ful generalization, natural priors should be shared across tasks
such that the same prior can be used in many different situa-
tions, predicting task independence. Conversely, demonstra-
tion of a prior in only a single task leaves open the possibility
that the behavioral effects attributed to that prior are instead
caused by idiosyncratic response strategies elicited by the
task and thus the real prior may be different from that assumed
[14, 15]. In order to test the task independence of priors, we
need to compare the priors used in different tasks that operate
on the same stimulus set. To do so requires us to overcome a
major obstacle: the lack of any method for extracting poten-
tially complex, high-dimensional priors for naturalistic stimuli
across different tasks.

Cognitive Tomography

Here we develop a novel Bayesian approach, cognitive tomog-
raphy, that can be applied to a wide variety of behavioral tasks
by allowing simple discrete choices to be used to reveal
detailed and quantitative information about a subject’s per-
sonal, potentially complex and high-dimensional mental repre-
sentations. The term “cognitive tomography” is motivated by
the isomorphism with traditional structural tomography in
which a detailed high-dimensional physical structure is recon-
structed from a sequence of low-dimensional measurements
(derived from mathematical integrals over the underlying
structure) by solving the “inverse problem” [16]. Analogously,
our method reconstructs an individual subject’s representa-
tional structure using a sequence of simple discrete choices
(arising from mathematical integrals over the underlying struc-
ture) by explicit inversion of a model describing how re-
sponses depend on mental representations.

We start with the idea that objects can be described by
multidimensional features, and a subject’s prior over a class
of objects is a probability distribution over those features
[17, 18]. For example, the feature space we use is based on
the physical appearance of a large sample of human faces
scanned in three dimensions and is constructed along the first
two principal components of their geometrical structure [19].
Figure 1A (top) shows this feature space as well as the prior
of a hypothetical subject plotted in this space: gray scale indi-
cates the probability, according to the subject, with which a
face represented by each location belongs to the class of
familiar faces. To avoid terminological confusion later, we
will refer to a subject’s prior as their “subjective distribution,”
and in line with other studies of perceptual priors, we assume
that it affects perceptual decisions without necessarily being
explicitly accessible by the subject. The key element of our
approach is that we explicitly treat the subjective distribution
as an unknown quantity that cannot be observed directly
and thus needs to be inferred from observable behavior. For
this, we use “ideal observer” models that link subjective distri-
butions to behavior, and by inverting these models using
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Figure 1. Cognitive Tomography Applied to Estimating Priors for Faces

(A) Information flow in the ideal observer model. In the model, a subjective distribution, P, encodes prior knowledge about stimuli. In this study, a subjective
distribution for faces assigns a probability value (gray levels) to each face as a function of its location in feature space (here the two dimensions of the feature
space correspond to the first two principal components of the structure of faces [19] and are measured in units of SD). Representative faces corresponding
to the corners of the feature space are shown. The ideal observer infers hypotheses, H, about the stimuli it perceives, S, using prior knowledge encoded in P.
Based on the inferred hypotheses, it computes the final response R. Both perception and decision making are subject to noise and biases, Q.

(B) Cognitive tomography inverts the ideal observer model to compute P based on R and the presented stimuli, S* which is corrupted by perceptual noise to
yield S. Note that information available to the ideal observer and cognitive tomography (circles with green fill) to compute their final output (blue arrows and
circles) is complementary.

(C) In the familiarity task, participants are presented with a pair of faces (top) and are required to pick the one that they judge more familiar. Each face cor-
responds to a particular location in feature space (colored dots in the bottom panels correspond to stimuli in the top panels). The ideal observer model
makes its choice by considering two hypotheses (bottom; hypothesis 1, face 1 is more familiar than face 2; hypothesis 2, vice versa) that each specify a
way in which the stimuli could have been generated. According to these hypotheses, the familiar face is a sample from the subjective distribution (corrupted
by perceptual noise; colored covariance ellipses), and the unfamiliar face is sampled randomly and uniformly from the feature space (also subject to percep-
tual noise). Given a subjective distribution and the covariance of perceptual noise, the ideal observer assigns a probability to each hypothesis and then
through a decision process (also including noise) determines the probability of each possible response.

(D) In the odd-one-out task, participants are presented with three faces and are required to pick the one that looks the most different from the other two (top).
Each hypothesis corresponds to two of the faces being noise-corrupted versions (bottom; pairs of dots enclosed by covariance ellipses) of the same un-
derlying face (centers of ellipses) and the third face (the odd one out) being a noisy version of a truly different face (isolated dots within covariance ellipses,
here shown as circles).

See also Figure S1 for further details and validation of the method.

probabilistic machine learning methods [20] we estimate the
subjective distribution.

Ideal observer models formalize subjects’ responses in sim-
ple perceptual decision-making tasks as a two-step process
[21] (Figure 1A; see also the Supplemental Experimental Pro-
cedures available online). First, the subject performs Bayesian
inference to compute the probability of different hypotheses,

H, about how the perceived stimuli, S, may have arisen within
the context of the given task, based on prior knowledge about
these stimuli encoded in their subjective distribution, P. Then,
the subject gives a response based on the probabilities of
these hypotheses, where the decision-making process itself
may also be imperfect such that the subject does not always
produce the response which corresponds to the most
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probable hypothesis. The result of this two-step process is a
probability distribution over possible responses, R, given the
presented stimuli, the subjective distribution, and other
parameters of the ideal observer model, Q, such as noise
and biases in perception and decision making:

Pideal observer(R‘Sv Pa Q) (1)

The essence of our method (Figure 1B) is to use a second
layer of Bayesian inference to invert the ideal observer model
in order to estimate the subjective distribution from the set
of responses the subject gives to the stimuli presented over
the course of an experiment, S* Due to perceptual noise, the
stimuli perceived by the subject, S, are not exactly the same
as the stimuli they are presented with S* and the experimenter
only knows (and controls) the latter. Thus, this uncertainty
needs to be taken into account as a probability distribution
over the subject’s perceived stimuli given the presented stim-
uli and noisiness in the subject’s perception, P(S|S", Q). We
place flexible prior distributions over both the subjective distri-
bution, P(P), and the parameters describing perceptual and
decision making noise and biases, P(Q). Using Bayes’ rule,
we compute the posterior distribution over possible subjective
distributions by combining these priors with the ideal observer
model as the likelihood (and integrating out the other
parameters):

P(PIR,S )«

P(P) / dQ P(Q) / dS P(S|S’, Q) Pigea opserver (R|S, P, Q). @

Crucially, while the ideal observer is task-specific by defini-
tion, the subjective distribution need not be. Thus, this separa-
tion in our model between these two parts allows us to analyze
behavioral data from different tasks and quantify the relation
between the derived subjective distributions.

We applied cognitive tomography to infer subjective distri-
butions in two different tasks. In one task, subjects had to
decide which of two faces was more familiar (Figure 1C), while
in the other task they were asked to choose which of three
faces was the odd one out (OOO; Figure 1D). Therefore, the re-
quirements in these two tasks were fundamentally different:
the familiarity task explicitly asked subjects to judge each
stimulus in terms of its familiarity, with no requirement to
compare the structure of the two faces, while the OO0 task
required subjects to compare the structures of the three faces
to each other, without the need to determine their familiarity.
Importantly, by using ideal observer models, our mathematical
framework allowed us to treat these tasks in a unified
formalism even though they had different task requirements
and were different at a psychological level.

In the familiarity task, we modeled the ideal observer as
comparing directly the probabilities that the subjective distri-
bution assigned to the two faces and choosing the one with
the higher probability (Figure 1C, the face on the right being
more familiar). Thus, this model does not necessarily imply
that subjects simply judge familiarity based on averageness:
in fact, if the prior is multimodal, or nonconvex (as is the
case in Figure 1A), then its “average” might have low probabil-
ity density and hence our model would predict a low familiarity
rating for it. In order to make this ideal observer model concep-
tually consistent with that of the OOO task (see below), we re-
formulated the same decision rule in terms of the ideal
observer comparing the probabilities of different hypotheses

about how the stimuli might have arisen [6, 22]. Each hypoth-
esis posited that one of the faces was a sample from the
subject’s subjective distribution (Figure 1C, dots), with some
potential perceptual noise added (Figure 1C, ellipses), while
the other face came from another distribution (here assumed
to be uniform; see also Figure S1 and the Supplemental Exper-
imental Procedures for a decision theoretic rationale).

In the OO0 task, our ideal observer model entertained
three hypotheses, each positing that two of the displayed
stimuli were noisy realizations of the same underlying face
which was sampled from the subjective distribution (Fig-
ure 1D, dots within the same elongated ellipse), while the
third, the odd one out, was a noisy realization of another
face, corresponding to another sample from the subjective
distribution. Thus, for stimuli that are equidistant from each
other (as in 90% of trials in our experiment), the three hypo-
theses can only be distinguished using the subjective
distribution. While in general the influence of the subjective
distribution can be complex, one simple intuition is based
on considering the two possible ways in which a subject
can account for any apparent differences when presented
with two stimuli. They either attribute these differences to
just perceptual noise (while assuming that only one object
was sampled from their subjective distribution), and thus
deem the two stimuli to be identical at a fundamental level,
or they assume that the differences between the stimuli are
due to there having been two different objects sampled
from their subjective distribution, and thus that the two stim-
uli are really different. As the two accounts differ in the num-
ber of objects sampled from the subjective distribution (one
or two, respectively), their relative likelihood is scaled by
the probability of the stimuli under the subjective distribution:
the higher this probability is, the more likely the second
account becomes, resulting in a higher propensity to discrim-
inate stimuli that are closer to high probability regions of the
subjective distribution. With three stimuli present, as in our
00O task, it is one out of such a high probability pair that
will likely be the odd one out (i.e., hypothesis 1 or 2 in Fig-
ure 1D; see also Figure S1).

In both the familiarity and the OOO task, the behavioral
response of the subject was modeled as comparing the prob-
abilities of the different hypotheses and making a choice
based on these probabilities, with noise and biases in the
perceptual and decision making processes so that less prob-
able hypotheses were sometimes chosen. We validated the
method to show that it is able to extract subjective distribu-
tions from such noisy responses and is robust to the choice
of feature space and test stimuli (Figure S1).

Complex, Task-Invariant Subjective Distributions over
Faces

We extracted the subjective distributions of ten subjects who
performed both the familiarity and the OOO task. The sub-
jective distributions were independently estimated in each
subject and in each task. The distributions we found were
complex, often not well described by a single mode, and
varied greatly across subjects (Figures 2 and S2). This varia-
tion across subjects in the familiarity task confirms that
subjects were performing this task by judging familiarity as
intended, with respect to prior experience with faces in the
world rather than based on familiarity with respect to the stim-
ulus distribution presented in the experiment [23]—as unlike
the extracted subjective distributions, the stimulus distribution
was identical across subjects.



Current Biology Vol 23 No 21
2172

FAMILIARITY ODD-ONE-OUT

0.22

0.11

Subject 1

0.42

0.21

Subject 2

0.20

0.10

0.26

0.13

Subject 4

0.92

0.46

Subject 5

Subject 3
| —
_a i _a i T

FAMILIARITY ODD-ONE-OUT
0.28
©
i3]
2 . ‘ 0.14
Ke]
=)
@ ~
0
0.22
N~
g -
2 ' 0.1
=)
@
0
0.16
[o0)
-
2 0.08
=)
@
0
0.12
o
3 »
2 0.06
=)
@
0
0.22
o
3 \ 0.11
2
@
| — 0

Figure 2. Subjective Distributions Inferred from the Two Tasks for the Ten Subjects

Each plot shows the probability (gray levels) over the principal component feature space (x4 SD along each dimension as in Figure 1A). Subjects are ordered
according to their consistency score (from high to low), which is a model-free measure of the repeatability of their behavior for identical stimuli. See also

Figure S2 for inferred values of other decision parameters.

Importantly, despite differing greatly across subjects, sub-
jective distributions were similar between tasks within each
subject. In order to quantify dissimilarities between subjec-
tive distributions, we computed a standard information
theoretic measure of distance between them, the Jensen-
Shannon (JS) divergence. JS divergences between distribu-
tions corresponding to the same subject but to different tasks
were significantly lower than JS divergences between the
distributions of different subjects within each task (Figure 3A,
p=5x 10"% and p = 0.047 in the familiarity and 00O
tasks, respectively). Embedding of all subjective distributions
in a two-dimensional space by multidimensional scaling [1]
based on their JS distances also showed that subjective dis-
tributions strongly clustered based on subject and not task
(Figure 3B).

The apparent differences between the estimated priors of
some of our subjects across the two tasks could have arisen
either because priors are truly different or because of random-
ness in subjects’ responding (accounted for in our model by
perceptual and decision noise; Figure S2) that makes the esti-
mation less accurate. However, as we had repeated a fraction
of the trials, we were able to quantify the consistency of

subjects by measuring the probability that they gave the
same answer to the same stimuli on different occasions [24].
This provided us with an independent model-free measure of
the reliability of subjects. We found that, as expected because
of subjects’ perceptual uncertainty and behavioral stochastic-
ity, consistency scores were far from 100% (familiarity, 0.76 =
0.04; OO0, 0.62 = 0.05; mean =+ SE). Importantly, the subjec-
tive distributions of the more consistent subjects were also
more similar in the two tasks (Figure 3C, r = 0.69, p = 0.028;
see also Figure 2, in which subjects are ordered from most
to least consistent, and Figure S3). This suggests that within-
subject dissimilarities of estimated subjective distributions
are due to factors not related to the stimuli and the corre-
sponding priors, but to inherent variability in subjects’
responses.

Predicting Behavior Within and Across Tasks

If indeed the subjective distributions we inferred are funda-
mental to subject’s mental representations, then they should
allow us to predict subjects’ responses to novel stimuli. More-
over, if the subjective distributions are truly task independent,
we should be able to predict behavior in one task based on the
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(A) Jensen-Shannon (JS) distances between subjective distributions inferred in the same subject for the two different tasks (left), inferred in different sub-
jects within the familiarity (middle) and odd-one-out (right) tasks. Dots show individual comparisons (left, subjects; middle and right, subject pairs), boxes
show mean =+ SE. The dashed line shows the estimated lower bound based on the average distance between distributions inferred from two halves of the

data from the same task and same subject. *p < 0.05, **p < 0.01.

(B) Two-dimensional embedding of subjective distributions for the ten subjects and two tasks (symbols) based on multidimensional scaling applied to all 190
pairwise JS distances. Lines connect distributions of the same subject, and line width is proportional to the consistency score of the subject.
(C) Across-task JS distances for each subject (symbols) against the subject’s task-average consistency score. The regression line shows hyperbolic fit to

data.
Colors for subjects in (B) and (C) are as in Figure 2. See also Figure S3.

subjective distribution we inferred from behavior on the other
task. Figure 4 shows that both within- and across-task predic-
tions (red and pink bars, respectively) are significantly above
chance (dashed line; p = 1.1 x 107% and p = 4.9 x 107° for
within- and across-task predictions for the familiarity task
[top row], respectively; p = 2.7 x 10"% and p = 4.8 x 1076 for
within- and across-task predictions for the OO0 task [bottom
row], respectively; see also Figure S4). Remarkably, within-
task predictions for the familiarity task are very close to an
expected upper bound that can be computed based on sub-
jects’ consistency [25] (Figures 4E and 4F). Furthermore, the
subjective distributions we extracted from the familiarity task
also provided across-task predictions in the OO0 task that
were as accurate as within-task predictions in that task (p =
0.84). This suggests that the familiarity task is an efficient para-
digm for extracting priors which generalize to other tasks
(although it may not be readily applicable to all perceptual do-
mains, such as visual motion).

We used three alternative models for predicting subjects’ re-
sponses to validate the results that we obtained by cognitive
tomography. First, the assumption that the two tasks invoked
intrinsically different decision rules was tested through the use
of the same decision rule in the OO0 task as in the familiarity
task: simply choosing the most familiar face, or conversely
the least familiar face, as the odd one out. Both of these deci-
sion models had significantly poorer predictive performance
than the original decision model; in fact, their performance
was sometimes close to chance (Figure S4). This confirms
that subjects processed the same set of stimuli in fundamen-
tally different ways in the two tasks.

Second, although the subjective distributions in Figure 2
show a great deal of structural detail, it could be that these
fine details are idiosyncratic and have little relevance for sub-
jects’ behavior. We sought to rule out this possibility by replac-
ing each inferred subjective distribution with a distribution that
lacked these fine structural details but had the same mean and
covariance (a single moment-matched Gaussian). If the struc-
tural details of the distribution we inferred were idiosyncratic,
then predictions based on the simplified “moment-matched”
distributions should be as good as those based on the inferred
distributions. However, taking into account the originally

inferred subjective distributions led to significantly better
predictions than using the moment-matched distributions
(Figures 4C and 4D, blue bars; p = 0.0056 and p = 0.025 in
the familiarity and OOO tasks, respectively; see also Figure S4).
This shows that the details of the subjective distributions re-
vealed by our inference algorithm, which go beyond simple
means and covariances, rather than being artifactual have
true behavioral relevance.

Third, to test whether predicting subjects’ responses bene-
fits from assuming that there is a task-independent compo-
nent of their mental representation, we predicted responses
using a Gaussian process (GP) classifier that is a state-of-
the-art learning algorithm that has no notion of subjective dis-
tributions and is optimized directly for within-task prediction.
Nevertheless, our method outperforms the GP classifier
(Figure 4C and 4D, green bars; p = 0.023 and p = 0.076 in the
familiarity and OOO tasks, respectively; see also Figure S4).
Importantly, the GP classifier directly fits subjects’ stimulus-
to-response mappings without extracting underlying subjec-
tive distributions and thus has no way to provide across-task
predictions. In contrast, in the OOO task, even our across-
task predictions are as good as (even marginally better, p =
0.092, than) the within-task predictions of the GP classifier
algorithm.

Discussion

Previous methods aimed at extracting mental representations
were limited because they were constrained to be used with
only one particular task [1-10]. For example, multidimensional
scaling can be used to construct a psychological space in
which the proximity of individual stimuli is determined by the
subject’s similarity judgments (akin to the judgments subjects
needed to make in our OOO task) [1], but it is unclear how this
space could be useful to process or predict familiarity judg-
ments about the same stimuli. Similarly, reverse correlation
methods can be used to extract a classification image in a
task that essentially requires familiarity judgments [7, 25],
but such a classification image only provides information
about the mean or mode of the prior [26] and thus remains un-
informative about the rich structural details of the priors we
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Figure 4. Predicting Subjects’ Responses Within and Across Task with Different Models

(A and B) Individual subjects. Performance of cognitive tomography is shown for within-task (red) and across-task predictions that is using subjective dis-
tributions inferred from one task to predict behavior in the other task (pink). The dashed line shows chance performance. Subjects are ordered by their

average consistency on the two tasks (as in Figure 2).

(C and D) Group averages (mean + SE) comparing cognitive tomography (red and pink bars) to alternative predictors. Replacement of subjective distribu-
tions with moment-matched Gaussians, thus ignoring the fine structural details of the subjective distributions, decreases performance (dark blue, within
task; light blue, across task). A Gaussian process (GP) classifier that is directly optimized to fit subjects’ stimulus-to-response mappings without assuming
the existence of subjective distributions also performs worse and is unable to generalize across tasks (green bars). ®p < 0.10, *p < 0.05, **p < 0.01.

(E and F) Within-task predictive performance of cognitive tomography for each subject (symbols color coded as in Figure 2) against their consistency levels.
Boundary of gray shaded area shows expected upper bound on the performance of any predictor as a function of consistency. Error bars show 95% con-

fidence intervals.
See also Figure S4 for a more detailed analysis of predictive performance.

have demonstrated. Moreover, it is again unclear how the
classification image could be relevant to similarity judgments
in tasks such as our OOO task, especially given that we have
shown familiarity not to be directly predictive of behavior in
the OOO task. In contrast, our method extracts detailed sub-
jective distributions over multidimensional feature spaces in
away that it can be used with essentially any task type in which
performance depends on these distributions.

The priors we extracted were strikingly different across sub-
jects but invariant across tasks. The distinct subject specificity
of the priors for faces we found is in contrast with lower-level
sensory priors which have been found to be more similar
across subjects [3]. However, even such lower-level priors,
for example those over the direction of illumination [13] and
the speed of visual motion [23], have been shown to be plastic
to experience. Thus, the difference between our subjects’
priors over faces may in part reflect their different personal
experiences with faces, possibly relating to their geographical
and cultural backgrounds. Personal experiences for lower-
level features can be expected to be more uniform, which
could account for the similarity of the priors for such features
across subjects in other studies.

The issue of task invariance is also important because task-
specific and -independent representations map onto two
fundamental mechanisms of learning: discriminative and
generative. In discriminative learning, one learns the mapping
from stimuli to responses directly for each task with the aim of
optimizing task performance. Thus, discriminative learning is
solely tailored to improve performance in each specific task
separately. In contrast, in generative learning, one learns the
probability of experiencing different stimuli irrespective of

the task. This task-independent representation can then be
used to generate different stimulus-response mappings de-
pending on task demands. Classical theories of learning sug-
gest that task-independent representations, arising through
generative learning, are beneficial when the range of tasks is
wide, and hard to prespecify. For example, generative repre-
sentations of low-level perceptual features such as edges in
visual scenes account well for neural and behavioral data
[27-29]. In particular, behavior in tasks that only rely on such
low-level features has been shown to use different readout
mechanisms operating on representations that are shared
across tasks [30]. However, when the set of required tasks is
limited or is well known a priori, task-specific representations,
brought about by discriminative learning, would be beneficial
[31]. For example, discriminative learning would be expected
for high-level tasks such as object recognition and categoriza-
tion [32-35]. This theoretical distinction makes our results of
task-independent representations of human faces particularly
unexpected because this is a domain in which there is a set of
naturally required tasks (such as familiarity, categorization,
and outlier detection) for which learning might be expected
to be specialized. Therefore, one might expect that other rep-
resentations, for which the human brain may have less special-
ized circuitry [36, 37], will also be task independent.

Our results thus suggest that there should be a common
neural underpinning of a subject’s priors employed across
several tasks. This is not a conclusion that could have been
easily achieved through neuronal recordings from higher-order
cortical areas because it would require inverting a model that
defines how these subjective distributions are reflected in neu-
ral activity. While there are well-established ideal observer
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models that describe how prior distributions are reflected in
subjects’ behavior, there is no comparable understanding of
how complex, multidimensional priors are reflected in neuronal
firing [11, 38]. However, our cognitive tomography method is
directly applicable to search for such neural correlates as it
provides a method for computing an independent, purely
behavior-based regressor for techniques such as functional
imaging and neurophysiology. Moreover, our method can be
readily generalized beyond the domain of perception, for
example, to estimate conceptually abstract priors such as
over moral beliefs by modeling subjects’ responses to ques-
tionnaires using ideal observer models derived from item
response theory [39]. Thus, in combination with neural
recording techniques, our work opens the way to the study of
the neural underpinning of even such abstract priors.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures
and four figures and can be found with this article online at http://dx.doi.org/
10.1016/j.cub.2013.09.012.
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Figure S1. Model details and validation of cognitive tomography; related to Figure 1. (continued from
preceding page)

(A) Graphical models of the hypotheses (corresponding to different values of r*) in the ideal observer mod-
els of the two tasks (left: familiarity, right: odd-one-out). Circles denote random variables, arrows denote
conditional independence relationships.

(B) Left: Repeated runs of the MCMC sampler on the same data set yield near-identical subjective dis-
tributions. Subjective distribution of an example subject is shown (subject 4 of Fig. 2). Note that the
characteristic fine structure of the subjective distribution is retained upon repeated inference on the same
data. Center: Rotating the stimulus dimensions does not affect the inference algorithm. Inference of the
subjective distribution was performed in a basis of stimulus features that was rotated by —45° from the orig-
inal basis around the center of the feature space. Cardinal directions of the subjective distribution are rotated
together with the basis. Right: For ease of comparison with subjective distributions on the left, subjective
distributions in the center were rotated back by +45°. Gray-levels are as in Fig. 2.

(C) Inferred subjective distributions are robust to changes in the distribution of stimuli used in the experi-
ments. Synthetic subjective distribution (top, center) used to generate responses in the familiarity (left) and
odd-one-out tasks (right). Stimuli (colored dots) and inferred subjective distributions (gray-levels) using
five different stimulus distributions (individual panels). Green and red dots for the familiarity task represent
stimuli displayed on the left and right of the screen, respectively; green, red, and blue dots for the odd-one-
out task represent stimuli displayed on the left, in the middle, and on the right of the screen, respectively.
Mean of the stimulus distribution was (0, 0), (2,0), (—2,0), (0, —2), and (0, 2), while keeping the standard
deviation constant (1.5). Main qualitative characteristics of the subjective distribution were retained despite
substantial changes in the stimulus distribution.

(D) Nonlinear warping of the feature space — or, equivalently, non-Gaussian and non-translation-invariant
perceptual noise — is unlikely to result in artifactual similarity between subjective distributions inferred in the
same subject from different tasks. Synthetic subjective distributions (left) were used to generate responses
under increasingly nonlinear warping transformations of the feature space (top row), determining the map-
ping from presented to perceived stimuli. Inference of subjective distributions was performed without taking
the warping into account, as would be the case with real subjects for whom the warping is unknown (bottom
three rows). Similar distributions are only inferred when the warping is weak and the underlying subjective
distribution for the two tasks is the same (red boxes). Dissimilar distributions are found with strong warp-
ing (e.g. green boxes), and when the underlying distributions are different either with weak (blue boxes) or
strong warping (cyan boxes).
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Figure S2. Posterior mean estimates of nuisance parameters of the ideal observer model in the familiarity
(left) and OOO task (right); related to Figure 2.

(A) Sigmoidal decision functions for each subject: inverse decision noise, (3, is the slope of the sigmoid at
0, and lapse rate, x, is the offset of its lower and upper bounds from 0 and 1, respectively. Note that while in
the familiarity task the soft-max decision rule (Eq. S9) is formally equivalent to a logistic sigmoidal function
of the log odds of the two alternative hypotheses (abscissa), in the OOO task this is not the case (because
there are three alternative hypotheses). Nevertheless, the two parameters have analogous meanings in the
two tasks, and thus they are visualised here through sigmoidal functions in both cases to aid intuition and
across-task comparison.

(B) Covariance ellipses characterising perceptual noise, Y ice, fOr €ach subject. Surrounding box shows
principal component feature space (44 s.d. along each dimension as in Figs. 1A and 2).

(C) Prior decision biases, 7, for each subject shown as points along a unit segment (familiarity, vertical
offsets only for visibility) or within an equilateral triangle (OOQO). Endpoints of the segment (familiarity)
and vertices of the triangle (OOO) correspond to decision biases only favoring the corresponding choice
(i.e. prior decision bias of 1 for that choice), other locations represent a linear interpolation of these biases
(i.e. no biases for the point at the centre). In all panels, colors for subjects are as in Fig. 2.
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Figure S3. Consistencies in the two tasks; related to Figure 3.

Consistency scores measured in the two tasks were highly correlated with each other (*p<0.05), and also
with the natural logarithm of the inverse decision noise parameters, In /3, of the subjects (familiarity: r=0.75,
p=0.013; OO0O0: r=0.60, p=0.048, data not shown). Colors for subjects are as in Fig. 2.
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Figure S4. Comparison of predictions with alternative methods; related to Figure 4. (continued from pre-
ceding page)

(A-D) Predicting subjects’ responses within and across task with different models — using the probabilistic
fraction correct measure of predictive performance. Bars show fraction of correctly predicted responses
based on cross validation. Predictive performances are shown for individual subjects (A,C) and across sub-
jects (B,D, mean = s.e.) in the familiarity (A,B) and odd-one-out task (C,D).

(A,C) Performance of cognitive tomography is shown for within-task (red) and across-task predictions
(pink). Gray bars show individual chance levels (section 6.6). Subjects are ordered by their average consis-
tency on the two tasks (as in Figs. 2 and 4).

(B,D) Comparing cognitive tomography (red and pink bars) to alternative predictors. Replacing subjec-
tive distributions with moment-matched Gaussians (section 6.4.1), thus ignoring the fine structural details
of the subjective distributions, decreases performance (dark blue: within-task, light-blue: across-task). A
Gaussian process (GP) classifier that is directly optimized to fit subjects’ stimulus-to-response mappings
without assuming the existence of subjective distributions (section 6.4.2) also performs worse and is unable
to generalize across tasks (green bars). Using ideal observer models that assume that subjects respond on
the odd-one-out task as if they were performing the familiarity task (section 6.4.3) also leads to significantly
worse performance (dark and light orange / salmon: within- and across task predictions for choosing the
most / least familiar stimulus as the odd one out, respectively), thus confirming the fundamentally different
nature of the two tasks. Finally, predicting responses based on other subjects’ subjective distributions (black
bars) also degrades performance substantially. Dashed lines show average of subject-specific chance levels.
*)p<0.10, *p<0.05, *p<0.01.

(E) Comparison of predictive performance (mean =+ s.e.) based on Bayesian integration, MAP estimation,
and using the posterior mean estimate for the familiarity task (left) and the odd-one-out task (right). No
significant differences were found between the performance of different methods (p>0.1 for all pair-wise
comparisons).

(F) Cognitive tomography outperforms the GP classifier (left) and the moment-matched Gaussian (right):
within-task prediction of the responses of individual subjects (circles and squares for the odd-one-out and
familiarity tasks, respectively) was above chance (dashed lines) in all cases but one (the exception was sub-
ject 10: moment-matched Gaussian was 0.2% below chance on the familiarity task), and the performance of
cognitive tomography was consistently higher than that of the GP classifier (left, 18/20 symbols are above
the diagonal) and the moment-matched Gaussian (right, 19/20 symbols are above the diagonal). Colors for
subjects are as in Fig. 2.



Supplemental Experimental Procedures

1 Experiments

Ten participants (7 male, 3 female, age range 21-41, mean 27.8), who were naive to the purpose of the
experiment gave their informed consent and participated in the study. All had normal, or corrected to
normal vision. The study was approved by the Psychology Research Ethics Committee of the University
of Cambridge. Subjects participated in two tasks in which they made judgments about faces presented on a
computer screen.

Subjects sat approximately 60 cm in front of a 18-inch LCD monitor (resolution 1280x 1024 pixels, refresh
rate of 75 Hz). Three dimensional photo-realistic faces were generated using the Basel Face Model (BFM)
[S1] and rendered at 300x300 pixels. The BFM is based on 3D scans of 200 faces (half male and half
female) to each of which a mesh (with over 50,000 vertices) is fit. Principal Components Analysis (PCA) is
performed separately on the three-dimensional coordinates and on the colors of the vertices. Faces can then
be reconstructed as a combination of the 199 principal components. For the experiments we varied the first
two principal components of the structure within 44 standard deviations around the means (zero), while
leaving all other principal components (including those determining color) fixed at their mean values.

1.1 The feature space used in this study

In our method, as in other related work [S2, S3], the feature space itself needs to be predefined. We chose
a feature space spanned by the (first two) principal components of the structural face-space defined by
Ref. [S1] which thus reflects the ‘natural statistics’ of faces. (This space should not be confused with that
spanned by so-called ‘eigenfaces’, conventionally used in studies of human face perception [S4]. Eigenfaces
are principal components of the pixel values of grayscale images of faces, whereas our features are principal
components of the geometrical structure of 3D faces. One way to illustrate the fundamental difference
between the two is that in our space, realistic faces can be generated by using only two dimensions, i.e.
setting all but two coordinates to zero, while this would be impossible using eigenfaces.) Our choice was
motivated by the assumption that subjects’ representation of faces would be using a feature space that is
adapted to the natural statistics of faces, as such an adaptation has been demonstrated to be a fundamental
principle underlying the organization of lower-level sensory representations [S5].

While there is no guarantee that the feature space we chose is the one actually used by subjects, as long
as there is a smooth mapping between the two spaces, the subjective distributions we extract can still be
analysed (Fig. S1D). Although the choice of feature dimensions by itself does not bias our inferences about
subjective dimensions, our priors over the subjective distribution, and our choice of a translation-invariant
perceptual noise distribution (see below) are obviously specific to this feature space and will thus inevitably
bias the inference procedure (as would any other model choice do). Nevertheless, these biases remain
benign: the high predictive power of our method (Figs. 4 and S4) indicates that salient features of subjects’
mental representations are well captured by the feature space we chose. Moreover, the task-invariance of
inferred distributions also indicates that our feature space is appropriate (Fig. S1D). Also note that we make
no assumptions that subjects use all pixels of the image; they could attend to different parts of the image,
such as the mouth or the nose. However, as these features vary smoothly with the principal components we
use to parametrize faces, our method is still applicable and the results can still be meaningfully plotted in



our feature space.

We chose a two-dimensional feature space as a compromise between having a large enough space that
can accommodate a wide variety of subjective distributions but does not require an excessive number of
trials to estimate those distributions. Importantly, the inference algorithm itself readily generalizes to higher
dimensional spaces. However, as the number of dimensions increases the number of trials needed to infer
subjective distributions also increases in our current paradigm which samples stimuli randomly for each trial
(see below). Therefore extensions to high dimensions will require active learning paradigms [S6] which can
substantially reduce the number of trials by selecting stimuli on each trial for which knowing the subject’s
response will be maximally informative about their subjective distribution.

1.2 The familiarity task

For the familiarity task, subjects were given the following instructions: ‘For this test we will show you two
faces. Choose the face which is more familiar to you’. On each trial, two faces were displayed horizontally
adjacent on the screen (Fig. 1C). At the start of each trial, the mouse cursor was positioned midway between
the two faces and subjects used the mouse to make their choice by clicking on one of the faces.

We generated stimuli by first drawing a ‘center’ location from a bivariate, isotropic zero-mean Gaussian
with a standard deviation of 3, ¢ ~ N(0, 3I). The two stimuli were then generated by first sampling a unit
COS (v
sin «v
to be symmetrical around the ‘centre’ in the direction of this vector with a distance of 1.5: s; = ¢+ 0.75 v,
so = ¢ — 0.75v. Any stimulus lying outside the range of +4 along either dimension was redrawn from
an isotropic zero-mean Gaussian with a standard deviation of 3, truncated at +4 along each dimension.
This procedure led to around 56% of samples with a separation of 1.5, and the remainder had a range of
separations. (The fine details of the distribution of stimuli used in the experiments did not matter, as our
method for inferring mental representations is robust to them, see Fig. S1C.)

vector with a uniformly random orientation, v = > where a ~ U(0, 27), and making the two stimuli

Subjects performed 1000 trials with a short break every 100 trials. In the last 100 trials we repeated the pairs
of stimuli presented during the first 100 trials with the locations of stimuli and the order of trials randomized.
This allowed us to assess each subject’s consistency (see section 6.5).

1.3 The odd-one-out task

For the odd-one-out task (OOQ) task, subjects were given the following instructions: ‘For this test we will
show you 3 faces. Two people are from country A, one person is from country B. During each trial, click on
the person from country B, the odd one out.” Subjects were presented with three horizontally arranged faces
(Fig. 1D), and chose the odd one out by clicking on the appropriate face.

For each trial, we generated faces by first drawing a centre point ¢ from an isotropic zero-mean Gaussian
with a standard deviation of 3, truncated at +-3.5 along each dimension. The three faces were selected to lie
at the vertices of a triangle with a uniformly random orientation. For the first 100 trials we used isosceles
triangles with the length of the longer sides being 1.5 and the length of shorter side gradually increasing
over these trials from 0.5 to 1.5 to yield equilateral triangles from trial 100 onwards. The first 100 trials
eased the subjects into the task as two of the faces were clearly similar compared to the third face. As in the



familiarity task, subjects performed 1000 trials and the last 100 trials repeated the stimulus triplets presented
during trials 101-200.

Each participant completed the odd-one-out task (75435 mins) followed by the familiarity task (155433
mins). By running subjects on the odd-one-out followed by the familiarity task, we avoided a potential
confusion due to a carry-over of the instructions that would have led subjects to simply choose the most
or least familiar of the three faces rather than the odd one out. We also explicitly tested for the possibility
of following familiarity response rules in the odd-one-out task in the behavior of our subjects and found
no evidence for it (Fig. S4). Conversely, the instructions for the odd-one-out task cannot be used in the
familiarity task.

2 Ideal observer models

We denote the set of stimuli perceived by the subject in trial ¢ by .S (), and the subject’s response to this
stimulus by (). In our model, a subject’s decision is principally governed by their subjective distribution
that we denote by P. The subjective distribution, P, is mathematically a probability distribution over stimuli
in feature space (two dimensional in our experiments). We assume that the subjective distribution does not
change during the course of the experiment and that the subject’s responses, (*), are independent and
identically distributed given the stimuli, S®), and their subjective distribution, P.

The stochastic dependence of the subject’s response, r(t), on the stimuli, S (t), and subjective distribution,
‘P, is described as a probability distribution P (r(t) |S ), 77). We derive this dependence from ideal observer
models (and drop trial index ¢ to simplify notation). An ideal observer model computes the statistically
optimal decision strategy given the subject’s mental representation of stimuli, P, and what they know about
the task. In particular, the ideal observer bases its decision on Bayesian inference over what the best response
in each trial would be. From the subject’s perspective, the stimuli S®) and the subjective distribution P
are observed. Each of the possible responses correspond to a different hypothesis, (1) about how the
current stimuli were generated. The subject’s task is to determine the posterior probability that each of these
hypotheses may be correct:

P(r* =1|S,P) o m - P(S|P,r* =1) (S3)

The posterior is a product of two terms. First, subjects may have a preference for choosing stimuli at
particular screen locations, which we model as a prior bias, 7;, for believing that hypothesis ¢ is the correct
one, and hence response 7 should be given. Second, this prior needs to be combined with the likelihood,
P(S|P,r* = 1), that defines the probability with which the combination of perceived stimuli are expected
given the subjective distribution and that hypothesis ¢ is correct.

Importantly, the functional form of this likelihood term depends on the particular psychophysical task the
subject is solving. In principle, any psychophysical task can be given an ideal observer model description,
and such an ideal observer model could be readily used in our framework.

2.1 The familiarity task

In the case of the familiarity task, the pair of stimuli perceived by the subject in a trial S are described
as a pair of two dimensional vectors, S = {s1, s2}, where s; and sy are the feature space representation



of the face displayed on the left and right of the screen, respectively. Following Refs. [S3, S7], there are
two alternative hypotheses (Figs. 1C and S1A) that may explain the stimuli, and the subject has to decide
which one is correct. Under hypothesis r* = 1, the left-hand stimulus s; is familiar, the right-hand one,
s9 is unfamiliar, and vice versa for r* = 2. From the perspective of an ideal observer entertaining P as its
subjective representation of stimuli, a familiar stimulus is sampled from P; an unfamiliar stimulus can be
arbitrary, thus it is sampled from an (improper) uniform distribution, Q, over stimuli. Furthermore, both
stimuli are corrupted by perceptual noise, described by the distribution O(s; s*) defining the probability of
perceiving s as a noise-corrupted version of the true stimulus presented by the experimenter, s*.

Therefore, the likelihoods of the two hypotheses become:
P(S = {51, 50} [P.r" = 1) = /0(31;3’;) P(s") ds* ./0(32;33) Q(s3) dss (S4)
P(S = {s1,s82}|P,r*=2) = /(9(51;5’{) Q(s7) ds] -/0(82;53) P(s3) dss (S5)

where s* is the true stimulus, uncorrupted by perceptual noise and thus not directly observable for the
subject. (The integral over the perceptual noise distribution for the stimulus sampled from Q could obviously
be omitted, as the marginal distribution of s obtained after this integral is still just an improper uniform, but
it is included here for symmetry.)

Although we choose the alternative distribution Q, from which unfamiliar stimuli are assumed to be sam-
pled, to be uniform, we could choose a more flexible form and infer it from data via the same procedure that
we use to estimate P. However, by choosing it to be uniform we ensure that the resulting decision rule is
intuitive (because it simply amounts to comparing directly the probabilities that the subjective distribution
assignes to the two stimuli) and consistent with the Luce choice rule (see below).

2.2 The odd-one-out task

In each trial of the odd-one-out task the subject perceives three stimuli S = {s1, s2, s3}. Accordingly, the
subject entertains three hypotheses, each corresponding to one of the stimuli being the odd one out. Under
hypothesis 7* = 1, two of the stimuli, s and s3 are related, whilst the first stimulus s; is unrelated to
them. Following Refs. [S8, S9], we can formalize the similarity or relatedness of so and s3 as being noise-
corrupted realizations of the same underlying stimulus sg, which is sampled from the distribution PP. The
odd face, s1, is a potentially noise-corrupted version of a different stimulus sy, which is also sampled from
P, but independently of sg. Fig. 1D illustrates this generative process, S1A shows the graphical models
corresponding to the three hypotheses.

Under this generative process the likelihoods of the three hypotheses are:
P(S = {s1,s2,83}|P, 7" =1) = /(9(31; sh) P(spH) dsh /0(52; s5) O(s3;55) P(sg) dsg (S6)
P(S = {s1,s2,83} |P,r* =2) = /(’)(32; sp) P(sp) dsp /(’)(31; 55) O(s3;85) P(sg) dsg (S7)

P(S = {51, 5,55} |P,r" = 3) = /0(53;5;5)73(315)d35 /0(31;s§)0(32;s§)73(s§)ds§ (S8)

This model of ‘generative similarity’ has been shown to account for a wide range of experimental data



on subjective judgments of similarity [S9], including generalization gradients that match data better than
Shepard’s classical theory [S10].

3 Choice probabilities

In the previous sections we have derived how the posterior distribution over possible responses being correct,
P(r* = i|S, P), is computed. We complete our model by specifying how the subject’s actual response, r, is
related to this posterior.

If subjects behaved statistically optimally by trying to minimize the number of false decisions they make
(appropriate in an nAFC task, when their utility function uniformly penalizes all responses that are not the
correct one), they would always choose the response corresponding to the hypothesis with the highest poste-
rior probability P(r* = ¢|.S, P) (maximum a posteriori, or MAP decision). We introduce a generalization of
simple MAP decision making which is a standard and more flexible model of decision making [S3, S7, S11]
allowing for stochasticity in the decision process and lapses of attention:

* - B
P(r =i|S,P) = (1 — k) RP(T =i5.7) + (S9)
Y P =S, P)’
j=1

where R denotes the number of possible responses (R = 2 for familiarity, R = 3 for odd-one-out), and 3
and k are parameters that jointly control how deterministic the subject’s decisions are. Parameter « describes
stimulus-independent decision noise and can be interpreted as the lapse rate: on x fraction of trials there is
a lapse of attention and the subject responds randomly. Parameter /3 describes stimulus-dependent decision
noise: by setting how hard the threshold is for choosing different responses depending on the posterior
probabilities of their corresponding hypotheses. Larger values of 3 result in more deterministic behavior
and for k = 0 and in the limit 8 — oo the decision strategy approaches the deterministic MAP strategy; for
8 = 1 the subject performs probability matching by selecting each response in proportion with the posterior
probability for the underlying hypothesis; and 5 = 0 corresponds to random decision making.

4 Perceptual noise

A final source of suboptimality in a subject’s behavior is perceptual noise which we took into account for
computing the likelihoods of the competing hypotheses (see previous two sections). For simplicity, we
assumed this noise to be Gaussian distributed, O(s; s*) = N (s; s*, Xpoise ), centered on the true stimulus s*
with covariance X,.ise. Although, in principle, other perceptual noise distributions would be possible, our
choice is motivated by two reasons. First, we chose a translation-invariant distribution (i.e. one in which only
the mean depends on s*) to keep the number of parameters constrained and to avoid non-identifiability issues
when jointly inferring the subjective distribution and perceptual noise parameters. Second, the particular
Gaussian shape is practical, because we model the subjective distribution as a mixture of Gaussians and thus
the convolution with Gaussian perceptual noise (Eqs. S4-S5 and S6-S8) can be performed in closed form.
Although we expect both choices to be eventually incorrect, in the context of the current study they seemed
to have resulted in an acceptable approximation (Fig. S1D).



Perceptual noise also plays another important role in our formalism. The ideal observer is defined in terms
of the stimuli the subject perceives, S, whereas the experimenter only has access to (and control over) the
stimuli that the subject is presented with, S*. Thus, in order to be able to define response probabilities
conditioned on the presented stimuli, this uncertainty about the unobserved perceived stimuli needs to be
marginalized out using the same perceptual noise distribution, O(s; s*):

P(r=1i|S*,P) = /dS HO(Sj;S;f) P(r =1|S,P) (S10)

J

However, performing this integral would be computationally prohibitive, and the effects are phenomeno-
logically very closely matched by a simpler model which, instead of performing this integral, directly uses
Eq. S9 conditioned on the presented rather than the perceived stimuli with decreased /5 (and increased ) to
capture the increased apparent stochasticity of responding (not shown). Thus, we used this simpler approxi-
mation and note that the interpretation of the perceptual and decision noise parameters is ambiguous because
decision noise in this version of the model captures in part the effects of perceptual noise. Since the values
of these nuisance parameters were not of primary interest in this study (and were eventually integrated out to
avoid overfitting and to obtain the best estimate for the subjective distribution — see section 5.2), we regarded
this acceptable. Were the actual values of nuisance parameters relevant, Eq. S10 would need to be used, in
conjunction with a psychophysical paradigm specifically designed to disentangle the effects of perceptual
and decision noise.

In sum, parameters 7, 3, k, and Yise May vary across subjects, therefore we treat them as unobserved
quantities and infer them from experimental data, together with the subjective distribution P.

5 Inverting ideal observer models by Bayesian inference

The ideal observer models of the two tasks provide a probabilistic description of subjects’ responding
based on their subjective distribution P, and additional ‘nuisance’ parameters, Q = {m, 3, Kk, Xnoise }:
their prior biases ;, decision noise 3, lapse rate x, and perceptual noise Yi,ie. For brevity, we denote
all parameters that collectively govern a subject’s responding as 8 = {P,, [, k, Xnoise }- We now have

P (r(t) = i]S*(t), 9) , that we can interpret as a forward model of decision making. For inferring parameters

0 from the subject’s responses we need to invert this forward model by using Bayes’ rule (see below for a
description of the prior distribution over parameters, P(6)):

HP(r(t)|S*(t),9> P(6)
) B /HP(r<t>|S*(t>,9’) P(0) o’

P(01{s*®,r YL, (S11)

5.1 Parameter priors

Bayesian inference requires defining the prior distribution, P(#), that expresses our prior beliefs about pa-
rameters . We defined independent and minimally informative priors on each of the free parameters sepa-
rately:



Subjective distribution P was parametrized as a mixture of K = 4 multivariate normal distributions
P(s) = Zfil w; N (8; i, X;), described by parameters w;, p;, and 3;. This family of distributions is
flexible enough to capture complex probability distributions, but analytically convenient and simple
enough for computations to be carried out efficiently.

We parametrized the weights as w; = e />, ¢ to ensure they were positive and summed to one,
with w} ~ N (0, 1), and for the other parameters we had priors z; ~ N(0,I) and ¥; ~ Wishart(I, 3).
To ensure covariance matrices were positive definite and to improve numerical stability of the infer-
ence algorithm we used the lower-triangular Bartlett decomposition [S12].

Decision noise 5 was constrained to be non-negative, parametrized as § = e with B~ N(0,1).

Lapse rate ~ was bounded between 0 and 1, x € [0,1], and parametrized as k = 1/1+e~~" with £’ ~

N(0,1)

Perceptual noise covariance Y,.sc had a Wishart prior: ¥, ~ Wishart(I, 3), implemented via the
Bartlett decomposition [S12].

Prior decision bias m was a discrete distribution over R = 2 and R = 3 responses in the familiarity and
odd-one-out task, respectively, parametrized as m; = ¢/ | ¢™, with 7, ~ N(0,1).

5.2 Sampling algorithm

Having defined these prior distributions and using the ideal observer-based likelihood P (r(t) |S* (t), 9) we

can now use Bayes’ rule to calculate the posterior P (9 [{S* (t), () }th1> (Eq. S11). However, the parameters
space over which the posterior needs to be computed is large, and moreover, the integral in the denominator
of Equation S11, called the marginal likelihood, is intractable. Therefore we used a Markov chain Monte
Carlo (MCMC) sampling algorithm to generate samples from the posterior. In particular, as both the like-
lihood and the prior were differentiable with respect to parameters 6 we used hybrid Monte Carlo [S13] to
collect 10,000-50,000 samples (each including 20 leapfrog steps), with the results of the first 25% of the
steps discarded as ‘burn-in’.

The result of MCMC was a sequence 61, ..., 0y of N € [10,000, 50,000] samples that were distributed as
P <9| {S () @) thl) . Of the components of § we were particularly interested in the subjective distribution

‘P and considered the other parameters, {2, as nuisance parameters (we show posterior mean estimates of
these parameters in Fig. S2). All quantities of interest that we plotted and quantified depended on inte-
grals over the posterior distribution which were approximated by averages over the samples produced by
the MCMC algorithm (except where otherwise noted, see Fig. S4E). In particular, integrating out the nui-
sance parameters, {2, was important because they were partially unidentifiable (see section 6.3.3), and their
interpretability was limited (see section 4), and also because we wanted to avoid overfitting.

5.3 Validation of the inference algorithm

MCMC is a non-deterministic procedure, therefore repeated runs are variable, possibly producing different
results. However, after a sufficiently large number of steps, moments of the sequence converge, and we
should not see any difference in multiple runs. Thus, as a basic test of the validity of our sampling algorithm,



we ran four independent chains for each dataset. Figure S1B shows for a randomly chosen subject the
posterior mean subjective distribution obtained from two independent runs of MCMC.

The particular prior distribution we have chosen over subjective distributions is invariant under unitary trans-
formations of the coordinate system in which we describe stimuli. Therefore if we transform the coordinates
describing stimuli in any dataset and perform inference, we should obtain subjective distributions that are
transformed accordingly, provided that the transformation is unitary. We therefore rotated the stimulus co-
ordinates by 45°, and performed inference. These results are shown in Figure S1B. The fact that inference is
unaffected by such transformations demonstrates that the algorithm is robust to whether the experimenter’s
choice of feature coordinates corresponds to the feature dimensions relevant for the subject.

A factor that may confound the subjective distributions we infer from behavior is the distribution of stimuli
presented to the subject during the experiment: if we never observe the subject making decisions about
stimuli around a localized region in stimulus space, we cannot expect to recover their subjective distribution
accurately in that region. To demonstrate that the results of inference were robust to changes in the stimulus
distribution, we conducted an experiment in which the subjective distribution was known and fixed whilst the
stimulus distribution was varied. Data was generated randomly based on a synthetic subjective distribution
by simulating an ideal observer model, and our inference algorithm was used to recover the subjective
distribution from each set of simulated responses. The inferred subjective distributions were qualitatively
similar even for minimally overlapping stimulus distributions (Fig. S1C).

Another potential confounding factor may be a mismatch between the feature space we use to define the
coordinates of the stimuli and the space used by the subject internally to represent these stimuli (see also
section 1.1). This is equivalent to perceptual noise, which is assumed by our method to be translation-
invariant Gaussian (see section 4), being non-Gaussian and non-translation-invariant. However, simulations
with synthetic subjects show that the high degree of within-subject similarity of inferred distributions that
we observed across tasks is unlikely to be obtained unless our feature space is approximately correct (ie.
perceptual noise is approximately translation-invariant Gaussian) and the underlying distributions are truly
similar (Fig. S1D).

6 Details of data analyses

6.1 The posterior mean subjective distribution

In Figures 2 and S1B-D we visualize the posterior mean subjective distribution, which is obtained by com-
puting the mean probability assigned to any particular stimulus s under the posterior:

P(s) = /P(s) p(61(s*0. 1YL, ) a (S12)

Note that although each individual sample from the posterior over P is a mixture of K = 4 Gaussians,
when taking the mean of these samples, the resulting distribution will be a mixture of 4N Gaussians, where
N is the number of samples used. Therefore the posterior mean subjective distributions can take almost
arbitrarily complex shapes, and can for example have sub-Gaussian tails.



6.2 Jensen-Shannon divergence

Figure 2 allows one to visually compare the recovered subjective distributions and assess how similar or
dissimilar they are to each other. These dissimilarities were quantified more rigorously by using the Jensen-
Shannon (JS) divergence, which is defined over a pair of probability distributions P and @ as follows:

JS[P|Q] = ;KL[P”P+Q] +;KL[QHP;Q] (S13)
where KL[P||Q] denotes the Kullback-Leibler (KL) divergence defined as
_ P(s)
KL[P|Q] = /P(s) log o0) ds (S14)

The JS divergence has several useful properties that make it suitable for our analysis. It is zero if and
only if the two distributions are identical, and it is always finite and bounded from above by 1. Unlike the
KL divergence, it is also symmetric in its arguments, and its square-root is a metric between probability
distributions (that is, beside its aforementioned properties it also satisfies the triangle inequality).

Unfortunately, the JS divergence between Gaussian mixture distributions — which is what we used to
parametrize subjective distributions — can not be expressed in closed analytical form. However, we may
compute an approximation to it by discretizing stimulus space and computing the JS divergence between
the discrete approximations to the subjective distribution. To perform discretization we evaluated the distri-
butions at the vertices of a regular 50 x 50 two-dimensional grid between [—5, 5].

We computed the JS divergence between pairs of posterior mean subjective distributions, 2; and P;, corre-
sponding to posterior distributions inferred from different datasets:

di;j = \/JS[ﬁZ‘Hﬁj] (S15)

Crucially, even if the true subjective distributions underlying the two datasets were the same, our computed
distance d; ; would not be exactly 0, because we perform inference on the basis of a finite, noisy data
set. This baseline distance provides an approximate benchmark for the distances measured under different
conditions when the subjective distributions underlying the datasets are not necessarily the same. To measure
this baseline value empirically, we ran the inference algorithm separately for the two halves of the data
collected for each subject and each task, using random and non-overlapping sets of 7' = 500 trials, and
computed the distance between the resulting two posterior mean subjective distributions. This baseline
distance, averaged across all subjects and both tasks, is shown in Figure 3A as a dashed line.

To visualize the result of inference across tasks and subjects (Fig. 3B) we performed multi-dimensional
scaling [S14] on the full distance-matrix computed between all 20 estimated subjective distributions (10
subjects x 2 tasks each).

6.3 Assessing predictive performance

We evaluated the quality of our inferences by measuring the predictive performance of our model via cross-
validation: we inferred its parameters on a subset of experimental data, and measured how accurately it



predicted responses in the held-out part of the data set. For this, we divided each data set (that is, one for
each subject and each task) into T}, = 700 trials based on which we inferred the subjective distribution
and other parameters of a subject, and T}t = 300 trials on which we used the inferred parameters to predict
the subject’s responses. To ensure uniform sampling of data over the whole course of the experiment, we
divided the experiment into chunks of 10 subsequent trials, and subdivided these such that the training and
test data included the first 7 and last 3 trials from all chunks, respectively.

6.3.1 Quantifying predictive performance

We used two metrics to quantify predictive performance. In Figure 4 we show the fraction of correct pre-
dictions. For this, we computed the probability of the subject choosing each of the possible responses in a
trial using the corresponding ideal observer model with the inferred parameters, and then predicted the re-
sponse that had the highest probability. We then computed the fraction of trials where the model’s prediction
matched the actual response of the subject.

Since subjects often do not give the same response even for the same stimuli (see section 6.5 for discussion
on consistency) and our model actually predicts a probability distribution over all possible responses, rather
than just a single response, we also used another metric of predictive performance that we call probabilistic
fraction correct (Fig. S4). For this, we computed the predictive probability assigned by the model to the
subject’s actual response in each trial, and then took the geometric mean of these probabilities over the test
set. (Note that this is equivalent to computing the likelihood of the model on test data.)

Probabilistic fraction correct is a more stringent metric of performance than the plain fraction correct metric
because it requires the model to match the subject’s full response distribution. It is therefore sensitive to the
model being over-confident when making mistakes, and it is a good measure for evaluating how well a model
is capable of representing the non-deterministic behavior of subjects. Similar to fraction correct, this more
stringent measure showed that cognitive tomography had high predictive power even on a subject-by-subject
basis both for within- or across-task predictions (Fig. S4).

6.3.2 Using Bayesian integration vs. point estimates for predictions

For predicting response probabilities for test stimuli, S*, we computed the average prediction based on all
possible parameter-combinations, 8 = {P, 7, 3, K, Lpoise }» under the posterior distribution we inferred from
our training data ({r(*), §*(t)} Tirsin see also above):

P(rls", {r®, s* 0} fign) :/P(rys*, 0) P(6l{r®, 5"} Ty ) ag (S16)

As in Figure. 2 we show the posterior mean subjective distributions (see section 6.1), for consistency, we
also computed predictions based on these distributions. That is, rather than integrating out our uncertainty
about the subjective distribution, P, only in the final step of making predictions, as is statistically correct
and done in Eq. S16, we first computed a point estimate over P and then made predictions based on that
(but still integrated out our uncertainty about nuisance parameters, 2 = {7, 3, Kk, Xpoise }» only in the final

step):
P(rls", {r®, $* Oy fig) :/P(rs*,P, Q) P(QI{r®, s*W}fign) a0 (S17)



where P is the posterior mean subjective distribution computed according to Eq. S12 (using only training
data) .

Another alternative way to make predictions was to first calculate the maximum a posteriori (MAP) estimate
for all the parameters, 6\iap, and then make predictions based on that:

P(T‘S*, {T(t), S*(t) zirlain) ~ P(T|S*, QMAP) (SIS)

where
Oriap = argmax P <9|{r(t), S*(t)}fg'fi“) (S19)
6

Figures 4 and S4 show predictions based on Bayesian integration (Eq. S16). As a control, we also com-
puted the performance of approximate strategies for making predictions based on both MAP (Eq. S19,
maximizing over samples of the posterior) and posterior mean estimates (Eq. S17). We found that predic-
tive performances were essentially indistinguishable (Fig. S4E), which is due to the fact that our posteriors
over parameters were sufficiently concentrated. As a consequence, plotting posterior mean subjective dis-
tributions for visualization (Figs. 2 and S1B-D, as described in section 6.1), provides a fair account of the
distribution required for accurate predictions.

6.3.3 Predictions across tasks and across subjects

Our main goal was to test the task- and subject-specificity of subjective distributions. For this, we made
predictions after swapping subjective distributions among tasks or subjects. However, even if subjective
distributions are task- or subject-independent, the other ‘nuisance’ parameters can still be specific to subjects
and tasks. Therefore, for making these kinds of predictions, we selectively swapped subjective distributions
but not other decision parameters.

More specifically, for across-task predictions, we computed the parameters of each subject for making pre-
dictions in the familiarity task based on subjective distributions inferred from the odd-one-out task by the
following procedure:

1. We inferred all parameters 6, including the subjective distribution P, from data collected in the odd-
one-out task.

2. We discarded all components but the subjective distribution, P, from the resulting samples, and se-
lected 10% of the samples of the subjective distribution (evenly spaced along the Markov chain) to
carry over to trials of the familiarity task.

3. We re-inferred the remaining (nuisance) parameters, 7, x, 3, and >p0ige, from data collected in the
familiarity task, conditioned on each sample subjective distribution we carried over from odd-one-out
task.

Crucially, this procedure ensured that the inferred subjective distributions were not influenced by familiarity
data.

For predicting behavior in the odd-one-out task based on data collected in the familiarity task, we had to
take an additional difficulty into account. It is well known [S3] that in this task the likelihood defined by



Eqgs. S3-S5 and S9 is degenerate in the sense that there are multiple configurations of the parameters P,
B, and Yise that have the same likelihood. This means that subjective distributions can only be inferred
up to certain invariances. This issue does not affect predictions in the familiarity task, but it would have an
effect predicting odd-one-out responses based on familiarity data. To circumvent this potential confound, we
computed the parameters of each subject for making predictions in the odd-one-out task based on subjective
distributions inferred from the familiarity task by the following slightly more complex procedure:

1. We inferred 0 from data collected in the odd-one-out task.
2. We discarded all parameters but 8 and X,ise, for which we retained 10% of the samples.

3. Conditioned on samples from the previous step we inferred the rest of the parameters (P, m, and k)
from data collected in the familiarity task.

4. We discarded all parameters but the subjective distribution, P, again for which we retained 10% of
the samples.

5. Conditioned on subjective distributions from the previous step, we inferred the rest of the parameters
from data collected in the odd-one-out task.

Again, crucially, this procedure ensured that the inferred subjective distributions were not influenced by
odd-one-out data.

We also performed predictions across subjects. For this, we performed the following procedure for all pairs
of subjects ¢ and j separately for the two tasks:

1. We inferred all parameters from subject 7’s responses.
2. We discarded all parameters but the subjective distribution.

3. We inferred the rest of the parameters from subject j’s data conditioned on the subjective distribution
samples from subject :.

Across-subject predictive performance is at or below chance (Fig. S4B, D) demonstrating that subjective
distributions are truly subject-specific.

6.4 Alternative models

We used a number of alternative models to control for different assumptions of cognitive tomography. The
assumption that structural details of the inferred subjective distributions matter was tested by using a sim-
ple but statistically valid approximation of subjective distributions (section 6.4.1). The assumption that
subjective distributions are relevant at all was tested by using a Gaussian process classifier which is a state-
of-the-art discriminative learning algorithm that has no notion of subjective distributions (section 6.4.2).
Finally, the assumption that subjects process stimuli in the two tasks in fundamentally different ways was
tested by using alternative decision models for the odd-one-out task (section 6.4.3).



6.4.1 Moment matching

The subjective distributions we inferred and show in Figure 2 show complex, subject-specific structure, and
seem to go beyond modeling means and simple linear correlations between dimensions. In order to test
the degree to which this structural complexity is meaningful in that it contributes to explaining subjects’
responses, we compared our predictions based on the full inferred subjective distributions against those
derived from alternative subjective distributions that matched the first and second order moments of the
original subjective distributions but contained no structure beyond that. For this control, we first computed
the posterior mean subjective distributions for each task and subject (same as shown in Fig. 2), and then
replaced each with the bivariate normal distribution matching its mean and covariance. We found that the
moment matched model significantly under-performed predictions based on the full subjective distribution
(Figs. 4C, D and S4B, D, F), which suggests that higher-order, complex structural features of subjective
distributions carry meaningful information about subjects’ responses.

6.4.2 Gaussian process classifier

We compared the predictive performance of our Bayesian model to a Gaussian process classifier (GPC)
[S15]. This method directly learns a probabilistic input-output mapping from stimuli S to the subject’s
responses 7, but it is completely ignorant of the task the subject tries to solve, or indeed the ‘meaning’ of
responses. The input to the GPC consisted of 4 or 6 dimensional real vectors formed by concatenating the
feature vectors of the two or three stimuli presented in each trial of the familiarity and odd-one-out tasks,
respectively, and the output was the discrete response of the subject.

To make predictions in the familiarity task, we used a binary probit GPC model with automatic relevance
determination kernel and used maximum likelihood to fit hyperparameters of the model. We used the open
source GPML MATLAB library [S15]. For the odd-one-out task data we used a robust multiclass GPC
[S16], and performed experiments using the source code made available by the authors of that algorithm.

For making predictions in the familiarity task we also tried a GPC using a kernel that was developed specif-
ically to model preferential choice behavior [S17] and which thus had more prior information about the
structure of the task the subjects performed. However, we found no significant improvement with this en-
hanced GPC compared to the standard GPC.

We found that cognitive tomography consistently outperformed the GPC (see subject-by-subject comparison
in Fig. S4F, and group averages in Figs. 4 and S4B, D). However, one would expect the GP eventually to
outperform any other method (ours included) in the limit of infinite data. We have conducted control simula-
tions with large amounts of simulated data (not shown) and confirmed that this was indeed the case. The fact
that cognitive tomography works better for limited amounts of data can be interpreted as an indication of the
usefulness of the domain-specific prior knowledge we built in by using a subjective distribution-based for-
malism — ie. that it is quantitatively useful to assume that human behavior is based on using such subjective
distributions.



6.4.3 Alternative ideal observer models for the odd-one-out task

An important assumption in our analysis is that subjects process stimuli in the two tasks, familiarity and
odd-one-out, in substantially different ways. Indeed, in line with this assumption, our ideal observer models
for the two tasks are markedly different. In particular, the odd-one-out task is not a widely studied task type,
and to our knowledge we are the first to provide an ideal observer model for it. To assess whether human
decisions were consistent with this model, and more generally, that they could not be explained by assuming
that subjects performed the two tasks following similar decision rules, we compared our ideal observer
model to two alternative models, familiarity-min and familiarity-max, that modeled subjects’ behavior in
the odd-one-out task essentially as if they were performing the familiarity task.

The familiarity-max model is analogous to our ideal observer-model for the familiarity task but with three
instead of two alternatives presented. In this model, the subject evaluates the probability of each of the
three stimuli being generated by their subjective distribution and prefers the stimulus that has the highest
probability.

 f 0<si;sz>7><s:>dszr
zj: [wj/o(sj;s;)P(s;)ds;r

P(r=14|S,P)=(1—k)

+ (S20)
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Under the familiarity-min model the subject evaluates the probability of each of the three stimuli being drawn
from their subjective distribution and prefers the stimulus with the smallest probability. In this model, the
subject tends to select the stimulus which is the ‘oddest’ on an absolute scale, rather than selecting the one
which is odd when compared to the remaining two alternatives.
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We found that the original ideal observer model for the odd-one-out task outperformed both the familiarity-
min and the familiarity-max models in both within-task and across-task predictions (Fig. S4B, D).



6.5 Consistency and predictability

None of the models we implemented, including cognitive tomography, could predict subjects’ responses
with 100% accuracy (Figs. 4 and S4). This could be a deficiency of these models, or it could be an inevitable
consequence of subjects’ noisy behavior. Intuitively, if a subject deterministically gives the same response to
the same stimuli each time, it should be possible to predict their responses with 100% accuracy. Conversely,
if the subject’s responding is uniformly random and independent of stimuli, no predictive model could
surpass chance level. Therefore, we measured subjects’ consistency, the fraction of trials with identical
responses to the same stimuli, and based on this consistency score we derived a model-free expected upper
bound on the predictability of their behavior. The following results closely follow those found in Ref. [S18],
we only include them here for completeness.

Note that the calculations below assume that both consistency and predictability (fraction correct) can be
measured exactly (continuous integrals over stimulus space in Eqs. S24-S25), as if we used infinitely many
trials to estimate them. Since, by necessity, these quantities must be measured using a finite set of trials in
experiments, both quantities are plotted with confidence intervals in Fig. 4E-F.

6.5.1 Two-alternative choice tasks (e.g. familiarity)

For this analysis we only assume that subjects’ responding is independent given the stimuli presented in
each trial and the corresponding response probabilities. Let us denote the probability of the subject’s most
probable response for a given set of stimuli S by p(.5). Thus, by definition

<pS) <1 (S23)

N =

The subject’s predictability, f* is defined as the best predictive performance achievable by any predictor.
Predictive performance is measured by the expected fraction of correct predictions, assuming sets of stimuli
are sampled from P4(S). The best predictive performance is achieved by a predictive model using MAP
estimation based on p(S), which always selects the subject’s most probable response for each set of stimuli.
In expectation, such a predictor achieves the following performance:

fr= / 45 i(S) p(S) (S24)

Unfortunately, it is impossible to estimate f* directly from data, without assuming a particular value or form
for p(.S). We will therefore focus on deriving an upper bound on f* that depends on quantities that can be
estimated from experimental data.

A key quantity in our analysis is a subject’s consistency, ¢, which is assessed by having a number of trial-
pairs repeating exactly the same set of stimuli, and measuring the fraction of trial-pairs out of these on which
the subject’s response was identical. Using our formalism, the average probability with which a subject gives
the same answer in two trials using the same set of stimuli can be expressed as

c= [ASP(S) [pS)*+ (1~ p(S)Y] (525)



This quantity depends on the subject’s response probabilities p(.S) and on the distribution Py(S) from which
sets of stimuli are sampled on consistency trials — and which we assume is the same as the distribution of
stimulus sets used on all other trials.

It is easy to see that predictability is lower bounded by consistency:
ffze (S26)

Importantly, it is also possible to compute an upper bound on f*, and consequently on the predictive perfor-
mance of any model, using the consistency c.

We will use E[. . .] to denote expectation under the stimulus set distribution thatis [ d.S Py(S) ... and rewrite
f* and c as
fm=E[p(5)] (527)
and
= E[p($)” + (1 - p(5))’] (528)
= 2Ep(5) ] —2E[p(S)] + 1 (529)
— 2 (Varlp($)] + E[p(S)]*) - 2E[p(S)] + 1 ($30)
- (Var )+ f*2) —2f 41 (S31)
>2f2—2f 41 (S32)

This leaves us an upper bound on f*:

1++v2c—-1
% = Fia (533)

f\/20

fr<

We note that we also obtain a lower bound, f* > 1
derived in Eq. S26, and as such it can be ignored.

, but it is looser than the consistency c, that we

In summary, knowing the subject’s consistency ¢ we have both a lower and an upper bound on their pre-

dictability f*:
Cgf*§1+\/2c—1: . (S34)

2 max

The upper bound is shown in Figure 4E.

6.5.2 Three-alternative choice tasks (e.g. odd-one-out)

The same reasoning applies when the subject can choose from three alternative responses, such as in the
odd-one-out task.

We start with the same assumptions as in the previous section. However, since there are now three options
in each trial, we will denote the probability of the response with the highest probability (preferred response)
by pu(S), and the probability of the response with the lowest probability (dispreferred response) by pr,(S).



(The probability of the third response is 1 — pg(S) — pr(.S)). Thus, to be consistent with their definitions,
these quantities must obey the following constraints:

1
3= pu(S) <1 (S35)
1—
max (0.1 2p(5)) < pi(s) < L) (536)
Now, f* is obtained just as before:
[ =Elpu(9)] (837)

Consistency, ¢ can also be estimated as before, as the fraction of trial-pairs the subject selected the same
response when the same stimulus set was presented. Its formula becomes slightly more involved:

¢ =E[pn(S)? + pL(S)* + (1= pu(S) = pL(5))’ (S38)

It is easy to show that for a given value of py(5), c is minimized when pr,(S) is at its maximum, that is

when ) ()
pL(S) = — 5 (839)
Substituting this back into the formula for ¢, Eq. S38, we obtain
1—pu(S)\?
¢>E|pu(S)? +2 <192H()> (S40)
3 1
= SE[pn($)°] ~ Elpu($)] + (s41)
3 9 1
= 5 (Varlpu(S)) + Elp(5)”) — Elpa(S)] + (54
_ 3 *2 * 1
=5 (Varlpu($)] + £2) = £+ 5 (343)
3 L. 1
> "=+ = 44
> S (844)
Rearranging the inequality, we obtain the following upper bound f; .. :
14++v6c—2
P 1 V0em2 (S45)

Qualitatively, this upper bound is very similar to the upper bound found in the two alternative-choice case
(Fig. 4F).

Consistencies and predictabilities for the two task-types are shown in Figure 4E-F. Importantly, the pre-
dictability bound f¥ .. in both tasks is independent from the model we use to make predictions, and even
the details of the task subjects are performing. It applies to any model and any task in which subjects choose
from two or three alternatives and their responding is assumed to be independent given the stimuli and cor-
responding response probabilities. Also note that the bound is relatively loose because it assumes that the
variance of maximal response probabilities across trials (or stimulus sets) is zero. In the three-alternative
choice case, it is even looser because the probability of dispreferred responses is also assumed to take the
highest possible value in all trials (i.e. for all stimulus sets). Considering the looseness of these bounds, it is
all the more notable that our predictive performance often comes remarkably close to them.



6.6 Subject-specific chance levels

The performance of predictive models was compared to the chance level, which in case there are R possible
outcomes to predict, is usually taken to be 1/r (Figs. 4 and S4E-F). This is the predictive performance of a
naive strategy, that randomly picks each possible outcome with equal probability, and any sensible method
should surpass it.

However, as our subjects did not choose each response with equal probability during the experiment, there
is a more stringent chance level which is specific to each subject. We can consider the performance of the
best predictor that ignores the stimuli presented to the subject, but exploits imbalance in their responses.

If stimulus sets are sampled from P;(S), and p;(.S) denotes the probability of the subject choosing response
7 when stimulus set S is presented, then the subject’s average probability of choosing response ¢, p; is

pi = / dS P.(S) pi(S) (S46)

Under the fraction correct evaluation, the best predictor of the subject’s responses that ignores the stimuli
presented always predicts response i* = argmax; p;. This predictor achieves the following fraction correct
level:

R
£ = [ASPS) 3o nlS) b = maxp, (347)
=1

We can see that I/r < f~ < 1, therefore when subjects choose, on average, each response uniformly, the
subject-specific chance level f~ reduces to the classical 1/r level.

Under the probabilistic fraction correct evaluation, the best predictor that ignores the stimulus presented
estimates the subject’s probability of choosing response ¢ to any stimulus as p;. This yields the following
probabilistic fraction correct level:

fprob =e

R
[asR) > ni(s) g o
i=1 = ¢ HPi}], (S48)

where H[-] denotes Shannon’s entropy. Again, it can be shown that 1/r < fl;rob < 1 and that fp?ob reduces
to the traditional chance level 1/R if and only if the subject chooses each response with the same probability
on average. Figure S4A-D shows subject-specific chance levels under the probabilistic fraction correct
evaluation.



Supplemental References

S1.

S2.

S3.

S4.

S5.

S6.

S7.

S8.

S9.

S10.

S11.

S12.
S13.

S14.

S15.

S16.

S17.

S18.

Paysan, P., Knothe, R., Amberg, B., Romdhani, S. & Vetter, T. A 3D face model for pose and illu-
mination invariant face recognition. in Sixth IEEE International Conference on Advanced Video and
Signal Based Surveillance , 296-301, (2009).

Stocker, A.A. & Simoncelli, E.P. Noise characteristics and prior expectations in human visual speed
perception. Nat. Neurosci. 9, 578-585 (2006).

Sanborn, A.N. & Griffiths, T.L. Markov chain Monte Carlo with people. in Advances in Neural
Information Processing Systems 20 (eds. Platt, J.C., Koller, D., Singer, Y. & Roweis, S.) 1265-1272
(MIT Press, 2008).

Calder, A.J. & Young, A.W. Understanding the recognition of facial identity and facial expression.
Nat Rev Neurosci 6, 641-51 (2005).

Fiser, J., Berkes, B., Orbdn, G. & Lengyel, M. Statistically optimal perception and learning: from
behavior to neural representations. Trends Cogn. Sci. 14, 119-130 (2010).

Houlsby, N., Huszar, F., Ghahramani, Z. & Lengyel, M. Bayesian active learning for classification
and preference learning. arXiv, 1112.5745 (2011).

Huszér, F., Noppeney, U. & Lengyel, M. Mind reading by machine learning: a doubly Bayesian
method for inferring mental representations. in Proceedings of the Thirty-Second Annual Conference
of the Cognitive Science Society 2810-2815 (2010).

Noreen, D.L. Optimal decision rules for some common psychophysical paradigms. in Mathematical
Psychology and Psychophysiology Vol. 13 (ed. Grossberg, S.), Vol. 13, 237-280 (Erlbaum & American
Mathematical Society, Hillsdale, NJ & Providence, RI, 1981).

Kemp, C., Bernstein, A. & Tenenbaum, J.B. A generative theory of similarity. in Proceedings of the
Twenty-Seventh Annual Conference of the Cognitive Science Society 1132—1137 (2005).

Shepard, R.N. Toward a universal law of generalization for psychological science. Science 237,
1317-1323 (1987).

Wichmann, FA. & Hill, N.JJ. The psychometric function: I. fitting, sampling, and goodness of fit.
Percept Psychophys 63, 1293-313 (2001).

Gupta, A. & Nagar, D. Matrix Variate Distributions (Chapman & Hall/CRC, 2000).

Neal, R.M. MCMC using Hamiltonian dynamics. in Handbook of Markov Chain Monte Carlo (eds.
Brooks, S., Gelman, A. & Meng, X.L.) 113-162 (Chapman & Hall/CRC, 2010).

Borg, I. & Groenen, P.J.F. Modern Multidimensional Scaling (Springer Verlag, 2005).
Rasmussen, C.E. & Williams, C.K.I. Gaussian Processes for Machine Learning (MIT Press, 2005).

Herndndez-Lobato, D., Herndndez-Lobato, J.M. & Dupont, P. Robust multi-class Gaussian process
classification. in Advances in Neural Information Processing Systems (NIPS) (eds. Shawe-Taylor, J.,
Zemel, R., Bartlett, P., Pereira, F. & Weinberger, K.) 280-288 (MIT Press, 2011).

Chu, W. & Ghahramani, Z. Preference learning with Gaussian processes. in Proceedings of the
Twenty-Second International Conference on Machine Learning 137-144 (ACM, 2005).

Neri, P. & Levi, D.M. Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision
Res 46, 2465-74 (2006).



	Cognitive Tomography Reveals Complex, Task-Independent Mental Representations
	Results
	Cognitive Tomography
	Complex, Task-Invariant Subjective Distributions over Faces
	Predicting Behavior Within and Across Tasks

	Discussion
	Supplemental Information
	Acknowledgments
	References


