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increase physical and chemical weathering, 
pulling more CO2 out of the atmosphere and 
so cooling the global climate8 . 

The near-consensus of papers in a vol­
ume devoted to this topic9 makes the uplift– 
weathering hypothesis a leading explanation 
for global cooling during the past 20 Myr. 
Still, ignorance of uplift histories across 
much of Tibet has made the hypothesis 
difficult to evaluate in full. In particular, with 
little direct evidence for uplift before 20 Myr 
ago, it is hard to claim that Tibetan uplift 
caused, or was even involved in, the global 
cooling that began 55 Myr ago and led to 
Antarctic glaciation by 36 Myr ago10 . 

If large-scale uplift did occur in north­
eastern Tibet as early as 37–33 Myr ago, 
chemical weathering of this high terrain 
could have contributed to global cooling 
then. Other evidence supports this idea. A 
striking increase in the global-ocean 87Sr/86Sr 
ratio began 40 to 35 Myr ago, and the extra 
87Sr probably came from the Tibet–Himalaya 
complex11, from both accelerated weather­
ing and the exposure of rocks rich in 87Sr. The 
early uplift inferred for northeast Tibet 

matches the initial upturn in this signal. 
Now the question is whether further 

exploration of Tibet will find evidence of 
even earlier uplift, especially during the 
cooling between 55 and 40 Myr ago10 . 
William Ruddiman is in the Department of 
Environmental Science, Clark Hall, University of 
Virginia, Charlottesville, Virginia 22903, USA. 
e-mail: wfr5c@virginia.edu 

1. Chung, S.-L. et al. Nature 394, 769–773 (1998). 

2. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Science 

255, 1663–1670 (1992). 

3. Rea, D. K. in Synthesis of Results from Scientific Drilling in the 

Indian Ocean (eds Duncan, R. A., Rea, D. K., Kidd, B., von Rad, 

U. & Weissel, J. K.) 387–402 (Am. Geophys. Un, Washington 

DC, 1992). 

4. Molnar, P. Am. Sci. 77, 350–360 (1989). 

5. Turner, S. et al. Nature 364, 50–54 (1993). 

6. Ruddiman, W. F. & Kutzbach, J. E. J. Geophys. Res. 94, 

18409–18427 (1989). 

7. Prell, W. L. & Kutzbach, J. E. Nature 360, 647–652 

(1992). 

8. Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Geology 16, 

649–653 (1988). 

9. Ruddiman, W. F. (ed.) Tectonic Uplift and Climate Change 

(Plenum, New York, 1997). 

10.Miller, K. G., Fairbanks, R. G. & Mountain, G. S. 

Paleoceanography 2, 1–19 (1987). 

11.Richter, F. R., Rowley, D. B. & DePaolo, D. J. Earth Planet. Sci. 

Lett. 109, 11–23 (1992). 

NATURE | VOL 394 | 20 AUGUST 1998 725 

100 YEARS AGO 
When the year’s work is over and all 
sense of responsibility has left us, who 
has not occasionally set his fancy free to 
dream about the unknown, perhaps the 
unknowable? And what should more 
frequently cross our dreams than what is 
so persistently before us in our serious 
moments of consciousness — the 
universal law of gravitation. We can leave 
our spectroscopes and magnets at home, 
but we cannot fly from the mysterious 
force which causes the rain-drops to fall 
from the clouds, and our children to 
tumble down the staircase. What is 
gravity? … Lord Kelvin is quoted as 
having pointed out that two sources or 
two sinks of incompressible liquid will 
attract each other with the orthodox 
distance law. Let us dream, then, of a 
world in which atoms are sources through 
which an invisible fluid is pouring into 
three-dimensioned space. … sinks would 
form another set of atoms, possibly equal 
to our own in all respects but one; they 
would mutually gravitate towards each 
other, but be repelled from the matter 
which we deal with on this earth. ... 
When the atom and the anti-atom unite, 
is it gravity only that is neutralised, or 
inertia also? May there not be, in fact, 
potential matter as well as potential 
energy? And if that is the case, can we 
imagine a vast expanse, without motion 
or mass, filled with this primordial 
mixture, which we cannot call a 
substance because it possesses none of 
the attributes which characterise matter, 
ready to be called into life by the creative 
spark? Was this the beginning of the 
world? 
From Nature 18 August 1898. 

50 YEARS AGO 
The trouble in Palestine sets back the 
clock on the recent efforts of both Arab 
and Jewish gardeners to develop the 
horticultural attractions of the Holy Land, 
for the palm boulevards of Jaffa, and the 
flower-growing settlements at Mishmar-
Hasharon, etc., had attracted much praise 
and attention. The danger, however, goes 
deeper, for modern Palestine was not the 
primitive wilderness of brigand and 
bedouin as depicted in most of the 
Western religious books. Several 
excellent gardens and plant collections 
were in the country, and their future is 
threatened by the bitterness of war. 
From Nature 21 August 1948. 

Whether reaching, throwing, run­
ning or dancing, our natural ten­
dency is to make smooth and pre­

cise movements. Out of the infinite number 
of ways that we could have made a particular 
movement, we generally pick the one that is 
the smoothest. The current thinking in the 
field of motor control is that the smooth, 
stereotyped trajectories made by our motor 
system are specially chosen to minimize jerk­
iness1,2 and to maximize efficiency3. Or could 
it be that smoothness is a by-product of a 

more fundamental computational goal of 
the motor system, a goal that only makes us 
look graceful by accomplishing something 
else? 

On page 780 of this issue4, Harris and 
Wolpert propose an alternative to the princi­
ple of maximum efficiency: the principle of 
maximum precision. On the face of it, mak­
ing a precise movement does not seem to 
imply smoothness. Imagine that the goal is to 
touch an object as precisely as possible in a 
fixed amount of time. Getting to the spot as 

Neurobiology 

Making smooth moves 
Terrence J. Sejnowski 

Figure 1 Hand trajectories for reaching before and after rotation of the body, showing that smooth 
movements are made even after adaptation in an altered environment. a, The subject was on a turn­
table and slowly rotated. b, View from above of average reaching movements, made in darkness to the 
position of a visual target that was extinguished just before the subject reached for it. The initial 
trajectories after the start of rotation (blue circles) were seriously affected by Coriolis forces, but after 
40 arm movements (yellow circles) the accuracy and velocity profile of the trajectory was almost 
identical to that of the original movement (green line). After the rotation stopped, the initial 
trajectory (red circles) shows the after-effects of rotation. (Adapted from ref. 7.) 
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quickly as possible and making a careful 
landing might be a better way to ensure pre­
cision rather than making the arm move­
ment as smoothly as possible. What this 
high-acceleration strategy does not take into 
account, however, is that the motor neurons 
that control the arm are noisy and cannot be 
counted on to get the arm to the same place 
for the same command. In particular, giving 
your muscles strong commands is exactly 
the wrong thing to do because the variability 
in the muscle output increases with the 
strength of the command. When they take 
activity-dependent motor neuron noise into 
account, Harris and Wolpert find that opti­
mizing the precision of the endpoint of a 
movement produces smooth movements 
with exactly the properties of those that we 
tend to make. 

The velocity profiles of arm movements 
are highly symmetrical around the midpoint 
of the movement. Simulations of a simple 
arm controlled by signals that have the same 
noise characteristics as our motor neurons 
have similar bell-shaped trajectories when 
the controller is optimized for maximum 
precision, over a wide range of parameters 
such as the inertia, viscosity and time con­
stants. Robustness of the shape of the veloci­
ty curve to the details of the arm model is 
particularly important because the univer­
sality of this property5 originally inspired the 
minimum-jerk model of motor control. Not 
only does smoothness apply to arm move-

dozens of trials to reduce the variability. 
However, we can see clearly and move accu­
rately on a single trial, so it is of interest to 
look more closely at the limits and possible 
benefits of neural variability. The existence 
of invertebrate brains that work at a much 
higher level of precision and repeatability 
with many fewer neurons, and the excep­
tional precision in the timing of spikes in the 
peripheral auditory and electrosensory 
systems of vertebrates, suggest that noise is 
not an inevitable consequence of sloppy 
components. 

To a first approximation, the variance in 
the firing rate of a neuron is proportional to 
its rate; in the cortex of the brain, the ratio of 
the variance to the rate is close to 1, making 
the spike trains of cortical neurons about as 
variable as radioactive decay. One possible 
benefit of having this degree of variability is 
to keep a neuron poised at its most sensitive 
region, near the threshold and ready to fire a 
spike whenever a suitable excitatory signal 
appears 8. A neuron that fires with a high 
degree of variability can carry more infor­
mation than one that fires at a constant rate, 
like a metronome9. But it is not yet clear how 
brains take advantage of the bandwidth in 
the spike timing. There may be other reasons 

for neural variability that we do not yet fully 
appreciate. The observation that, because of 
noisy motor neurons, we may have to move 
more smoothly in the outside world, could 
have a counterpart for internal brain func­
tions that also tend to run smoothly8,10. 
Noise may not be a problem for neurons, but 
a solution. 
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Pollination 

Sunbird surprise for syndromes 
Jeff Ollerton 

ments under normal conditions, it also holds 
after adaptation in altered environments 
(Fig. 1). The maximum-precision model 
also accounts for other universal laws of arm 
movements, such as those that relate the 
duration of a movement to the maximum 
precision attained6, and how the speed of 
movement scales with the radius of curva­
ture. It is also impressive that the model can 
account for a broad range of movements 
including saccadic eye movements, pointing 
movements and rhythmic arm movements. 

This explanation is satisfying for three 
reasons. First, reducing uncertainty should 
clearly be a primary concern of any move­
ment controller, whereas smoothness might 
reduce wear and tear but is more of a luxury. 
Second, the motor system is constantly 
calibrating itself to improve performance7 

(Fig. 1), and it is much easier to compute the 
endpoint error than the degree of smooth­
ness. Finally, grace is a reward for virtue, a 
bonus for being as accurate as you can possi­
bly be. So we may move through the world 
smoothly neither by chance nor necessity, 
but rather because of noise in our motor 
neurons. 

Noise is ubiquitous in the nervous system 
and is often ignored. The response of a neu­
ron to a sensory stimulus or the output of a 
motor neuron during an action is highly 
variable from one experimental trial to the 
next, so responses are typically averaged over 

Interactions between plants and their 
pollinators include some of the most 
striking and sophisticated of ecological 

affiliations1. On page 731 of this issue, Anton 
Pauw2 describes the relationship between the 
South African plant Microloma sagittatum, 
a member of the milkweed family, and 
its pollinator, the lesser double-collared 
sunbird (Nectarinia chalybea; Fig. 1). The 
importance of this work lies not only in the 
description and experimental demonstra­
tion of a surprising interaction — it also 
highlights the danger of assuming that a 
pollinator is known from an analysis of a 
pollination ‘syndrome’. 

Pollination syndromes are suites of 
flower characteristics (morphology, colour, 
nectar and odour) that supposedly attract 
particular pollinators to specific flowers, and 
allow them to forage at the exclusion of 
‘illegitimate’ visitors that would take the 
floral reward without executing pollina­
tion1,3. This idea is superficially tidy, and it 
appeals to the classifying minds of many 
biologists. Indeed, some authors have used 
this concept to infer the pollinators of species 
even without field data and then to draw far-
reaching conclusions about the historical 
ecology and evolution of such relationships4. 

But there are problems associated with 
the syndrome approach. First of all, most 

flowering plants are pollinated by a wide 
taxonomic range of pollinators5, and can­
not be shoehorned into neat syndromes. 
Second, the jaw-cracking terminology of 
the syndrome concept is often imprecise 
and confusing. For instance, the luridly 
coloured, foul-smelling flowers associated 
with ‘sapromyiophily’ (literally, flowers that 
mimic decaying organic material and are 
‘loved’ by flies) are often beetle pollinated. 
An example is the now famous Amorpho­
phallus titanum6, one of which flowered this 
June at Miami’s Fairchild Tropical Garden. 
Finally, and surprisingly (given their wide 
acceptance), the predictive value of pollina­
tion syndromes has never really been tested 
— there has been little attempt to use these 
descriptions as hypotheses to verify the use­
fulness of floral characteristics in predicting 
what might pollinate a particular plant. The 
syndrome of ‘ornithophily’ (bird pollina­
tion), for example, is typified by tubular, 
red, scentless flowers. Although many 
ornithophilous flowers fit this description, 
many do not; hummingbirds, for instance, 
can visit a range of flowers, regardless of 
morphology or colour7. 

Some workers have recently begun to 
take a healthily sceptical approach to the 
syndrome concept5,8. However, there are no 
published examples in which communities 
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human RPS4Y coding sequence as probe, at low stringency (overnight 
hybridization at 58 �C in 1 mM EDTA, 0.5 M NaPO4 pH 7.2, 7% SDS; 
subsequent washing three times for 20 min each at 50 �C in 1  X  SSC, 0.1% 
SDS). Once dog and opossum RPS4X clones were identified, by sequencing, 
these were used as probes for high-stringency rescreening of their respective 
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SMCX/SMCY in particular species by cDNA selection, or by screening cDNA 
libraries. In cDNA selection27, human RPS4Y coding sequence (as selector) was 
hybridized at 55 �C to cDNA libraries (Clontech) prepared from adult male rat, 
rabbit, dog or cattle liver. Selection products were cloned into plasmid vectors 
and sequenced. cDNA libraries prepared from adult male dog liver (Clontech) 
and adult male opossum spleen (Stratagene) were screened with the entire 

libraries (hybridization at 65 �C and washes at 65�C in  0:1  X  SSC, 0.1% SDS). 
We anticipated that RPS4Y clones, if present, would be detected in the low-
stringency screen but not in the high-stringency screen. In this manner, we 
identified opossum RPS4Y ( and RPS4X) cDNA clones, confirmed by sequen­
cing (GenBank AF051137 and AF051136, respectively) and mapping studies 
(K.J. and D.C.P., unpublished results; complete description will be published 
elsewhere), but in dog we detected only RPS4X clones. Similarly, we screened a 
cDNA library (Clontech) prepared from adult male rabbit liver at low 
stringency using a 370-bp mouse Smcx cDNA fragment (prepared from 
clone pCM4 (ref. 20) by PCR using primers CCTTCCAAGTTCAACAGTT 
ATGG and CATACGTATGACTCAATAAACTGGG), identifying 13 SMCX but 
no SMCY clones. 
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Signal-dependent noise 
determinesmotor planning 
Christopher M. Harris* & Daniel M. Wolpert† 

primers with which to assay RPS4X methylation in particular species; primer 
and underlying sequences have been deposited at GenBank: human, accession 
no. G36429; chimp and gorilla, G36430 and G36431; rabbit, G36432; guinea 
pig, G36433; mouse, G36434; rat, G36435; lemming, G36436; squirrel, G36437; 
dog, G36438; anteater, G36439; hedgehog, G36440; whale, G36441; and horse, 
G36442. For SMCX, PCR primers were chosen from CpG-island sequences 
found to be conserved between human and mouse: CCTCGGGCCCACCATG­
GAG and CTGATTTTCGCGATGTAGCC amplify a 117-bp product that 
includes three CCGG sites in humans and two in mice. We selected these 
conserved SMCX primers after sequencing 5� portions of the mouse transcript 
(GenBank AF0398940; obtained by 5� RACE cloning) and comparing these 
with previously published 5� human SMCX sequences20. 
Y-chromosome homologues. We searched for Y-specific homologues of ZFX/ 
ZFY and SMCX/SMCY in mammalian species by Southern blotting of EcoRI­
digested male and female genomic DNAs. For ZFY, we used two hybridization 
probes in separate experiments, with entirely concordant results (Figs 2 and 3): 
(1) a 395-bp genomic BssHII fragment10 from the 5� CpG island of human ZFY, 
and (2) pDP1007, a 1.3-kb genomic fragment containing the zinc-finger exon26 

of human ZFY. Probes were labelled with 32P by random-primer synthesis and 
hybridized overnight to Southern blots at 67 �C (65 �C for pDP1007) in 1 mM 
EDTA, 0.5 M NaPO4 pH 7.2 and 7% sodium dodecyl sulphate (SDS). Blots were 
then washed three times for 20 min each at 62 �C in  0:1  X  SSC 
(1 X SSC ¼ 0:15 M NaCl, 15 mM Na citrate pH 7.4), 0.1% SDS and exposed 
at − 80 �C with X-ray film backed with an intensifying screen for one day. The 
SMCY hybridization probe (pCM4) and conditions were described previously20. 

We also searched for Y-chromosome homologues of RPS4X/RPS4Y and 
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When we make saccadic eye movements or goal-directed arm 
movements, there is an infinite number of possible trajectories 
that the eye or arm could take to reach the target1,2. However, 
humans show highly stereotyped trajectories in which velocity 
profiles of both the eye and hand are smooth and symmetric for 
brief movements3,4. Here we present a unifying theory of eye and 
arm movements based on the single physiological assumption 
that the neural control signals are corrupted by noise whose 
variance increases with the size of the control signal. We propose 
that in the presence of such signal-dependent noise, the shape of a 
trajectory is selected to minimize the variance of the final eye or 
arm position. This minimum-variance theory accurately predicts 
the trajectories of both saccades and arm movements and the 
speed–accuracy trade-off described by Fitt’s law5. These profiles 
are robust to changes in the dynamics of the eye or arm, as found 
empirically6,7. Moreover, the relation between path curvature and 
hand velocity during drawing movements reproduces the empiri­
cal ‘two-thirds power law’8,9. This theory provides a simple and 
powerful unifying perspective for both eye and arm movement 
control. 

The trajectories of eye and arm movements (that is, the change in 
position and velocity over time) are not inevitable consequences of 
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8 
variability in the final position. If the noise were independent of 
the control signal16, then the accumulated error would be mini­
mized by making the movement as rapidly as possible, as in bang­
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trajectories are selected to optimize a cost that is integrated over the 
movement, such as jerk (rate of change of acceleration)13,14 or torque 
change15. However, there has been no principled explanation why 

bang control for linear systems. However, here we assume that the 
noise in the neural control signal increases with the mean level of the 
signal. This is based on the empirical observation that the standard 
deviation of motor-neuronal firing increases with the mean level, 
with a coefficient of variation between 10 and 25% (refs 17, 18). This 

noise is also 
psychophysical observations that the variability of motor errors 
increases with the magnitude of the movement, as captured by the 
empirical Fitt’s law5. In the presence of such signal-dependent noise, 
moving as rapidly as possible requires large control signals, which 
would increase the variability in the final position. As the resulting 
inaccuracy of the movement may lead to task failure or require 

corrective movements, 
counterproductive19,20. Accuracy could be improved by having low 
control signals, but the 
dependent noise inherently imposes a trade-off between movement 

4 
x 104 

a 

10 

15b 
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the mechanical properties of muscles, but reflect an orchestrated position, in the presence of biological noise, is the underlying 
pattern of neural activation by motor and pre-motor neurons. For determinant of trajectory planning. Noise in the final neural control 
saccadic eye movements, it has been proposed that trajectories are signal (that is, noise in the firing of motor neurons) will cause 
selected to minimize the time to reach the target10. For a linear trajectories to deviate from the desired path. These deviations will 
system, the minimum-time requirement results in ‘bang-bang’ be accumulated over the duration of a movement, leading to 
control, where the control signal is instantaneously switched 
between its maximum positive and negative values to accelerate 
and decelerate the eye. However, it is difficult to generate the 
observed symmetrical saccadic velocity profiles with bang-bang 
control signals11,12. For arm movements, it has been suggested that 

the central nervous system should have evolved to optimize such assumption of signal-dependent consistent with 

further moving very fast becomes 

movement will be slow. Thus, signal­
2 

0 

5 
-2 

200 1 

100 

e Predicted 

Agonist MN 

10ms 
Antagonist MN 

(inverted) 

quantities, other than that these models predict smooth trajectories. 
Indeed, the advantage of smoothness of movement still remains 
unexplained. Furthermore, how the central nervous system could 
estimate complex quantities, such as jerk or torque change, and then 
integrate them over the duration of a trajectory is also unknown. 

We propose that minimizing the variance of the eye or arm’s 

Figure 1 A comparison of bang-bang (dashed line) and minimum-variance (solid 

line) control for a 10 degree saccade with a duration of 50ms. a, Neural control 

signals; b, average position profiles of trajectories across repeated movements 

are similar; c, velocity profiles show a marked difference in their degree of 

symmetry; d, positional variance (obtained from equation (1) in Methods) which 

represents the spread of the eye position across repeated trials, about the mean 

position shown in b. Note that the variance continues to evolve after the mean 

position has become steady. The eye was modelled as a second-order linear 

system with time constants of 224 and 13ms. The variances have been scaled so 

that the peak for the minimum-variance model is unity. e, Empirical (from ref. 22, 

with permission) and predicted motor neuronal firing of agonist and antagonist 

eye muscles in monkey for a 12 degree saccade. To model the monkey’s faster 

plant, time constants of 150 and 7ms were used for this simulation. The predicted 

motoneuronal activity was derived from the control signal by splitting it into 

positive (agonist) and negative (antagonist) parts (the final tonic level of the 

antagonist has not been modelled). Note that temporal jitter of firing is likely to 

broaden and lower the predicted sharp antagonist peak. 

Figure 2 Comparison of empirical and predicted saccade trajectories. a, Velocity 

profiles of actual horizontal saccadic eye movements ranging in amplitude from 5 

to 50 degrees (taken from ref. 4, with permission). Saccades below 30 degrees are 

symmetric, whereas larger saccades are asymmetric with a longer decelerative 

phase. b, Theoretical optimal trajectories for minimizing positional variance with 

signal-dependent noise for a second-order linear model of the eye with time 

constants of 224 and 13 ms. c, Theoretical optimal trajectories for a third-order 

linear model of the eye with the additional time constant of 10ms. The predicted 

trajectories show the change in symmetry with saccade amplitude. 
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8 
of the neural control signal. On the basis of this single assumption, 
we determined the optimal trajectories of the eye and arm that 
minimized the total positional variance during the immediate post-

very similar to the third-order 
terms become 

more important, leading to asymmetrical and complex optimal 
trajectories. 

For arm movements, we first considered a simple one-dimen­
which captures 
inertia and viscosity23 

Methods). The optimal trajectory for a fast movement (Fig. 3b), 
in which feedback was assumed to play a negligible role, shows the 
typical bell-shaped velocity profile seen in natural movements24 

(Fig. 3a). The profile is again insensitive to changes in the plant, 
so that even when the inertia and viscosity of the arm or the time 
constants of the muscle are individually halved or doubled, the 

proposed that this saturation arises from limits 
signal10 , the minimum-variance model predicts this saturation 
without any such limits. The shapes of trajectories for amplitudes 
under 20 degrees were insensitive to modest changes in the time 
constants of the system, whereas these parameters had a much 

infinitely brief movements, the highest-order term dominates and 
the model predicts symmetrical trajectories12. In Fig. 2, trajectories 

shown; the trajectories 
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Figure 4 Comparison of empirical and predicted arm movement durations. a, 

Fitt’s law relates movement duration (T) to the movement amplitude (A) and target 
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duration and terminal accuracy. The key point is that for a given bigger effect on the slower movements. This is consistent with the 
amplitude and duration of movement, the final positional variance general observation that the speed and duration of large saccades 
will depend critically on the actual neural commands and the have greater variability within and between individuals than those 
subsequent velocity profile. We propose that the temporal profile of small saccades. For brief movements, the order of the plant is the 
of the neural command is selected so as to minimize the final major determinant of the optimal trajectory. In the limit, for 
positional variance for a specified movement duration, or equiva­
lently to minimize the movement duration for a specified final 
positional variance determined by the task. for second- and third-order models are 

We assume that neural commands have signal-dependent noise for models of higher order are 
whose standard deviation increases linearly with the absolute value model. For longer movements, the lower-order 

movement period (see Methods). For saccades, we considered a sional fourth-order linear model the muscle 
commonly used second-order linear system21, in which the mini- dynamics and the arm’s skeletal (see 

(Fig. 1b), on any single trajectory there will be a positional error and 
a non-zero velocity at the end of the movement due to the effect of 
the signal-dependent noise. Therefore, as seen in Fig. 1d, the 
positional variance can continue to change after the movement. 
Thus to minimize deviations from the final position, it is necessary 
to minimize variance over a post-movement period. The mini­
mum-variance solution results in a smooth symmetric velocity 
profile, in contrast to the asymmetric profile produced by bang-
bang control (Fig. 1c). The model is also in qualitative agreement 
with observed agonist and antagonist motoneuronal firing 
patterns22 (Fig. 1e). 

Over a range of amplitudes, the minimum-variance solutions 
(Fig. 2b) also capture the important features of natural saccadic 
movements (Fig. 2a)—symmetric short movements and asym­
metric long movements with an extended deceleration phase4 . 
With a third-order model of the eye, the optimal trajectories capture 
the bell-shaped trajectories observed empirically (Fig. 2c). The 
optimal trajectories also show a similar rise time for all saccades 
and a saturation in the peak velocity for saccade amplitudes above 
�30 degrees, as is observed experimentally. Although it has been 

optimal profile remains essentially unchanged (Fig. 3c). This is 
consistent with the observation that when the arm is subject to 
elastic, viscous or inertial loads, the bell-shaped velocity profile is 
regained after a period of adaptation6,7,25–28 . 

For arm movements, the required accuracy varies with the task, as 
for example in the difference between pointing to someone in a 
room compared with threading a needle. When pointing at targets, 
it is empirically observed that movement duration increases with 
the accuracy demanded by the task. This relationship is captured 

duration trajectory will be chosen, given the limits of the final 
endpoint variance imposed by the task. By assuming a linear 
relationship between the required final endpoint standard deviation 

empirically by Fitt’s law, in which the required accuracy is deter­
mined by the width of the target (Fig. 4a). For any given movement 
duration, signal-dependent noise places a lower limit on the final 
positional variance given by the minimum-variance trajectory. 
Conversely, given a movement accuracy constraint, specified in 
terms of final positional variance, there is a minimum duration of 
movement which can achieve this. We propose that this minimum 
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mum-variance and bang-bang solutions were compared for a 50-ms 
10-degree movement (Fig. 1). Both the control strategies reach the 
target position in the same time (Fig. 1b), but the positional 
variance in the post-movement period is significantly lower for 
the minimum-variance solution (Fig. 1d). Although on average 
the eye is on target, with zero velocity at the end of the movement 

Figure 3 Comparison of empirical and theoretical arm velocity profiles. a, Velocity 

profile of the hand in a typical fast arm movement (taken from ref. 24, with 

permission). b, Theoretical optimal trajectory for minimizing post-movement 

variance with signal-dependent noise for a second-order skeletal model of a 

one-dimensional arm with inertia 0.25 kg m2 and viscosity 0.2Nms rad− 1 driven by 

a second-order linear muscle with time constants of 30 and 40 ms (parameters 

taken from ref. 23). c, Eight velocity profiles for the model in b in which the inertia, 

viscosity and time constants are individually doubled or halved. The trajectory is 

essentially invariant to these large changes in the dynamics of the arm. 

width (W shown as different symbols and lines) according to 

T ¼ a þ b log2ð2A=WÞ, where a and b are constants. Empirical data from ref. 30 

(with permission). This shows the typical increase inmovement duration as either 

the amplitude of movement increases or the target width decreases. b, Predicted 

movement durations for the minimum-variance model in the presence of signal-

dependent noise. The movement duration was calculated as the shortest 

possible, given that the target width places an upper limit on the endpoint 

positional standard deviation (see Methods). Note the predictions for different 

widths, W, completely overlap. 
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and the target width, Fitt’s law emerges as a consequence of signal-
dependent noise (Fig. 4b). 

We next considered a two-joint nonlinear model of the arm 
moving in the horizontal plane (see Methods). The optimal trajec­
tories for point-to-point movements again showed bell-shaped 
velocity profiles (Fig. 5d) with gently curved hand paths (Fig. 5b), 
as observed empirically (Fig. 5a, c)15. For drawing movements, it has 
been found that hand velocity (V) decreases as the radius of 
curvature of the path (R) decreases—this has been formulated as 
the ‘two-thirds power law’, V ¼ KRð1 - 1Þ, where K is a constant and 
1 = 2=3 (refs 8, 9). We derived the trajectory that would minimize 
the positional variance of the hand when repetitively drawing 
ellipses (see Methods). The optimal trajectory shows the typical 
slowing down as the curvature increases (Fig. 5e) and reproduces 
the two-thirds power law, as seen by the regression line in Fig. 5f 
(slope of 0.32, giving 1 ¼ 0:68). This shows that the minimum-
variance trajectory predicts the two-thirds power law. 

From these analyses, we see that the trajectories of both saccadic 
eye movements and arm movements can be described as trajectories 
that minimize post-movement variance in the presence of signal-
dependent noise on the control signal. This approach has several 
important ramifications. Primarily, it provides a biologically plau­
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Figure 5 Comparison of empirical and predicted trajectories for a two-joint arm. a, 

Observed hand paths for a set of point-to-point movements (from ref. 15, with 

permission), and b, theoretical optimal hand paths for the same set of move­

ments. The coordinates are centred on the shoulder joint and X and Y directions 

represent the transverse and sagittal axes respectively. c, Observed velocity 

profiles from T1 to T3 movement in a. Note all other movements in a showed 

similar velocity profiles. d, Velocity profiles of all the optimal movements shown in 

b, normalized to have a maximum velocity of 1. e, Optimal trajectory for drawing an 

ellipse, the points are equally spaced in time. Note the slowing down at points of 

high curvature. f, Plot of log tangential velocity (V) against log radius of curvature 

(R). The two-thirds power law predicts logðVÞ ¼ logðKÞ þ ð1 - 1ÞlogðRÞ. Linear 

regression gives a slope of 0.32 (r2 ¼ 0:85) and hence the value of 1 ¼ 0:68. 

sible theoretical underpinning for both eye and arm movements. In 
contrast, it is difficult to reconcile observed saccade trajectories with 
bang-bang control, or to explain the biological relevance of such 
factors as jerk or torque change in previous models of arm 
trajectories. 

Moreover, there is no need for the central nervous system to 
construct highly derived signals to estimate the cost to the move-

the time spent in making 

can be

would carry more noise and therefore be suboptimal. 

ment, which is now variance of the final position or the conse­
quences of this inaccuracy, such as 
corrective movements19,20. Such costs are directly available to the 
nervous system and the optimal trajectory could be learnt from the 
experience of repeated movements. Finally, it seen that 
optimal trajectories are inherently smooth. Abrupt changes in the 
trajectory of the eye or arm require large driving signals which 

The minimum-variance theory provides a simple, unifying and 
powerful principle that can be applied to goal-directed movements 
and implies that signal-dependent noise plays a fundamental role in 
motor planning. D 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 

Methods 

We found the optimal trajectories numerically for both linear models of the eye 
and arm, and a nonlinear model of a two-joint arm, in the presence of signal-
dependent white noise in the control signal. The cost function that was 
minimized was the positional variance across repeated movements summed 
over the post-movement period. 
Linear models. For the linear models of the eye and arm, we consider a single-
input single-output discrete-time system under control with a state-update 
equation given by xtþ1 ¼ Axt þ Bðut þ wt Þ, where xt is the n-dimensional state 
at time t, ut is the neural driving signal at t (note that for arm movements, ut is 
the neural command signal that activates muscles and is not torque). A is a fixed 
n X n matrix and B is a n X 1 vector describing the dynamics of the system; wt 

represents white noise on the driving signal, with zero mean and variance ku2 
t , 

which increases with the magnitude of the control signal, ut, and represents the 
signal-dependent noise. By iterating the state-update equation, the distribution 
of the state at time t can be shown to have a mean 

t - 1 

E½xt ÿ ¼ At x0 þ LAt - 1 - iBui 

i¼0 

with covariance 

t - 1 

Cov½xt ÿ ¼ k LðAt - 1 - i BÞðAt - 1 - iBÞT u 2 ð1Þi 

i¼0 

The variance of the position at time t, Vt, is given by the appropriate element of 
the diagonal of Cov[xt]. We wish to find the driving signal, u ¼ ½u0; u1; u2;…; 

uTþRÿ
T, that reaches the desired position at time step T (the movement time) 

and maintains it for R steps (the post-movement time) and which minimizes 
the summed positional variance during this post-movement period, Si

T
=
+
T
R 
+1Vt 

(the cost). This can be formulated as a quadratic programming problem which 
was solved using Matlab. 

For the second-order linear model of the eye, the time constants were 224 
and 13 ms (ref. 21). Movement durations were taken from ref. 4. Simulations 
were performed with a time step of 1 ms and a post-movement fixation period 
of 50 ms. For the third-order model of the eye, an additional time constant of 
10 ms was included. There were negligible changes in the optimal trajectories 
for post-movement times R > 20 ms. 

For the one-dimensional arm model, we used the combination of a second-
order linear model of muscle and a second-order linear model of the arm’s 
skeletal system which included inertia and viscosity. The time constants of the 
muscle were taken as 40 and 30 ms and the inertia of the arm was 0.25 kg m2 and 
the viscosity was 0.2 N ms rad− 1 (ref. 23). Simulations were performed with a 
time step of 10 ms and a post-movement period of 500 ms. There were 
negligible changes in the optimal trajectories for post-movement times 
R > 200 ms. 

To simulate Fitt’s law, we assumed that subjects are required to place any part 
of their finger of width w (taken as 6 mm) within the target of width W with a 
fixed probability (the success rate). The required accuracy of the movement, 
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V5/MT), that feedback connections serve to amplify and 

larly in the case of stimuli of low visibility. More specifically, we 
show that feedback connections facilitate responses to objects 
moving within the classical receptive field; enhance suppression 
evoked by background stimuli in the surrounding region; and 
have the strongest effects for stimuli of low salience. 

We recorded single units and multiunits (114 single units and 54 
multiunits) in areas V1, V2 and V3 of anaesthetized and paralysed 
macaque monkeys. To study the role of feedback connections from 
area V5, a small region of the superior temporal sulcus (STS) 
containing this area was reversibly inactivated by cooling; we then 
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specified as the desired final positional standard deviation, was taken as 
ðW þ wÞ=r, where r was taken as 1.96 to achieve a 95% success rate. The 
movement duration was calculated as the shortest possible time that could 
achieve this accuracy constraint, given that the signal-dependent noise on the 
entire motor-neuronal pool had a 1% coefficient of variation. 
Nonlinear model. For the nonlinear two-jointed planar arm, we used two 
linear second-order muscles, as described above, acting on the shoulder and 
elbow joint of a two-link arm moving in the horizontal plane (arm parameters 
from ref. 29). The trajectories were parametrized as cubic splines with the knots 
evenly spaced in time. For the point-to-point movements, 7 cartesian (x,y) 
knots were used with the first and last points fixed at the start and target 
locations with zero velocity. 500 movements (650-ms duration, sampled at 
10 ms) were simulated with signal-dependent noise to determine the trajectory 
that minimizes the post-movement variance. The optimal trajectory was found 
using the simplex algorithm to adjust the knot locations. 

For ellipse-drawing movements (duration 600 ms, sampled at 20 ms), the 
knots represented the proportion of the distance travelled around the ellipse as 
a function of time. Seven knots were used with the first knot at zero and the last 
at one. This spline determined the velocity profile of the movement which was 
confined to an elliptic path. The simplex algorithm was used to find the optimal 
trajectory. 
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Cortical feedback improves 
discriminationbetweenfigure 
andbackgroundbyV1, 
V2andV3neurons 
J. M. Hupé , A. C. James*, B. R. Payne*, S. G. Lomber*, 
P. Girard & J. Bullier 

Cerveau et Vision INSERM 371, 18 avenue du Doyen Lépine, 69675 Bron Cédex, 
France 
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A single visual stimulus activates neurons in many different 
cortical areas. A major challenge in cortical physiology is to 
understand how the neural activity in these numerous active 
zones leads to a unified percept of the visual scene. The anatomical 
basis for these interactions is the dense network of connections 
that link the visual areas. Within this network, feedforward 
connections transmit signals from lower-order areas such as V1 
or V2 to higher-order areas. In addition, there is a dense web of 
feedback connections which, despite their anatomical promi­
nence1–4 , remain functionally mysterious5–8 . Here we show, 
using reversible inactivation of a higher-order area (monkey 

compared the neuronal responses before, during and after STS 
inactivation. We used visual stimuli consisting of an optimally 
orientated bar moved across the centre of the receptive field on a 
background of irregularly distributed, half light and half dark, but 
lower luminance, square checks (Fig. 1d). In a sequence of interleaved 
stimulus conditions, the bar and background moved one at a time, or 
together, in the preferred direction for the cell or its opposite. 

Figure 1a–c illustrates a spectrum of effects of the V5 inactivation 
for single neurons recorded in areas V1, V2 and V3, and stimulated 
by a bright bar moving in front of a stationary background of lower 
luminance contrast. A substantial and highly significant decrease in 
the response to the moving bar is observed in each case during V5 
inactivation. Figure 1e, f gives the population data. It is clear that 
diminution of responses is by far the most frequent effect of V5 
inactivation, as observed before for other feedback connections6,8. 
Of the total sample of sites tested, 33% showed a significant decrease 
(P � 0:01) and 6.5% an increase. Similar effects were observed in 
infragranular and supragranular layers. No effect was observed in 
layer 4C of area V1. 

The role of feedback connections in figure–ground discrimina­
tion was suggested to us when we found that the strength of the 
effect of V5 inactivation depended on the visibility of the stimuli 
used for testing neurons in area V3, an area that receives a 
particularly large feedback input from MT/V5 (ref. 9). We com­
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