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Hamilton, Antonia F. de C. and Daniel M. Wolpert. Controlling the
statistics of action: obstacle avoidance. J Neurophysiol 87:
2434–2440, 2002; 10.1152/jn.00875.2001. Task optimization in the
presence of signal-dependent noise (TOPS) has been proposed as a
general framework for planning goal-directed movements. Within this
framework, the motor command is assumed to be corrupted by signal-
dependent noise, which leads to a distribution of possible movements.
A task can then be equated with optimizing some function of the
statistics of this distribution. We found the optimal trajectory for
obstacle avoidance by minimizing the mean-squared error at the end
of the movement while keeping the probability of collision with the
obstacle below a fixed limit. The optimal paths accurately predicted
the empirical trajectories. This demonstrates that controlling the sta-
tistics of movements in the presence of signal-dependent noise may be
a fundamental and unifying principle of goal-directed movements.

I N T R O D U C T I O N

Almost any motor task can in theory be achieved using an
infinite variety of hand paths, velocity profiles, joint configu-
rations, and muscle co-contraction levels. Yet, despite this
redundancy in the motor system, almost every study has shown
stereotypical patterns in human movement. Recently, a theo-
retical framework, task optimization in presence of signal-
dependent noise (TOPS), has been proposed to account for the
stereotypy in goal-directed movements (Harris and Wolpert
1998). Here we compare the performance of TOPS with other
models of movement planning (Flash and Hogan 1985; Sabes
and Jordan 1997; Uno et al. 1989) in an obstacle-avoidance
task (Sabes et al. 1997, 1998).
The TOPS framework is based on optimal control, in which

each possible movement is assigned a cost and the movement
with the lowest cost is executed. Specifically, the TOPS frame-
work proposes that motor commands are corrupted by signal-
dependent noise, that is, noise whose SD increases linearly
with the absolute level of the motor command (constant coef-
ficient of variation). Such signal-dependent noise can be seen
behaviorally in isometric tasks: when subjects are asked to
generate either force pulses or constant levels of force, the SD
of the force increases linearly with its mean level (Schmidt et
al. 1979; Slifkin and Newell 1999). Similarly, the variability of
the amplitude of a movement increases as the desired ampli-
tude increases (Fitts 1966).
Given signal-dependent noise, the same desired motor com-

mand repeated many times leads to a distribution of possible

states of the motor system, for example, a distribution of
positions of the hand. TOPS proposes that selecting a move-
ment for a given task can be equated with optimizing some
function over this distribution, which leads to a unique optimal
trajectory (although in theory it may be possible to have more
than one optimal solution for some tasks). For example, by
minimizing mean-squared endpoint error in a goal-directed eye
or arm movement, TOPS is able to model the observed trajec-
tories of both saccadic eye and point-to-point arm movements
(Harris and Wolpert 1998). When subjects are asked to draw
ellipses, the relationship between the curvature of the hand
path and the hand velocity are related by a power law, known
as the two-thirds power law (Viviani and Terzuolo 1982). This
power law is predicted by the TOPS framework if the mean-
squared deviation of the hand from the desired elliptical path is
minimized (Harris and Wolpert 1998). Here we extend the
TOPS model to a more complex task, that of obstacle avoid-
ance, in which new stereotypical patterns have recently been
observed (Sabes et al. 1997, 1998).
Subjects generally produce asymmetric paths when asked to

move around an obstacle placed symmetrically between the
start and the target (Fig. 1A). These paths can be characterized
in terms of the near-point, the point on the path nearest to the
obstacle (Fig. 1B). Sabes and Jordan (1997) examined how the
near-point changes as the entire start, target, and obstacle were
rotated about the obstacle tip. They sampled the obstacle
orientations uniformly through 360°, but found that near-points
from the set of trajectories were not uniformly distributed. In
studies in both two (Sabes and Jordan 1997) and three dimen-
sions (Sabes et al. 1998), Sabes et al. found that the near-points
deviate from a symmetric distribution to cluster toward a
preferred axis (see, for example, Fig. 3A) and that this pre-
ferred axis changed over the workspace.
Sabes and Jordan interpreted this anisotropic distribution in

terms of inertial stability of the arm, as characterized by its
mobility ellipse (Hogan 1985). They proposed that subjects
skewed their paths to pass nearer the obstacle at a place where
they were more stable to any perturbations that might cause a
collision. They found good agreement between the empirically
measured axis of the mobility ellipse and the preferred axis of
the near-points. However, this explanation cannot be used
either to predict the trajectories or to determine the extent to
which the paths should be skewed.
Other current models of trajectory planning which could be
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applied to the obstacle avoidance task cannot predict the ob-
served behavior. The minimum jerk model (Flash and Hogan
1985) proposes that movements of the hand are smooth and the
cost is the integrated squared jerk (rate of change of acceler-
ation) of the hand over the movement. These movements are
planned only in endpoint space, independent of the arms dy-
namics, and therefore, the model predicts symmetric paths for
every obstacle orientation and no preferred axis. The minimum
torque change model (Uno et al. 1989) is also based on
smoothness, but at the torque level. The cost is the integrated
squared torque change summed over the joints and the move-
ment. Both the minimum jerk model and the minimum torque
change models predict that the trajectories would pass as close
as possible to the obstacle for two reasons. First, the optimal
paths without an obstacle are either straight (minimum jerk) or

close to straight (minimum torque-change), and therefore, the
cost reduces the nearer the path comes to the obstacle. Second,
both models assume no variability in the motor command, so
there is no penalty for coming extremely close to the obstacle.
Here we use the TOPS framework to simulate the obstacle

avoidance task, by minimizing the mean-squared error at the
target while ensuring that the probability of collision with the
obstacle remains below a fixed limit. We assess the perfor-
mance of the model against the performance of the mobility
ellipse model proposed by Sabes and Jordan and show that
TOPS is able to predict the trajectory, the amount of trajectory
skewing, and the preferred axis.

M E T H O D S

We simulated the obstacle avoidance task of Sabes and Jordan
(1997), in which subjects made arm movements in the horizontal
plane between two targets while avoiding a wedge-shaped obstacle.
The start and target locations were 25 cm apart and the obstacle
protruded 8 cm perpendicular from the direct line between the start
and target points (Fig. 1B). For each trial, the obstacle orientation was
selected from 180 different orientations, equally spaced at 2° intervals
around the circle. The orientation determined both the obstacle angle
and the positions of the targets so that the geometry of the task was
preserved (apart from the rotation about the obstacle tip). The exper-
iment was repeated at two positions in the workspace (Fig. 1A) for
movements in both the clockwise and the counter-clockwise direc-
tions.
We simulated this task within the TOPS framework in which we

assumed that motor commands are corrupted by signal-dependent
noise and that the subjects choose the motor command which mini-
mizes the mean-squared error at the target while limiting the proba-
bility of collision to below a fixed limit. Given this cost and this noise,
the TOPS framework was used to predict the optimal feedforward
trajectory, that is, with no on-line corrections for the noise, for a
two-joint model of the arm.
To find the optimal path for a given obstacle orientation and

location, a candidate path was constructed and the cost of this path
evaluated. To parameterize the path, we used a quintic spline to
specify the trajectory in Cartesian coordinates, x and y, each as a
function of time. A quintic spline was chosen because it is smoothly
differential up to fourth order, a necessary condition to generate a
smoothly modulating motor command for the arm, which we modeled
as a fourth-order system. Five knots, equally spaced in time, were
used with the first and last knots placed on the start and target
locations. The spline was constrained so that the velocity and accel-
eration were zero at the start and end of the movement (higher
derivatives cannot be constrained with a quintic spline). The trajectory
was therefore determined by six parameters, the x and y positions of
the three interior knots. The movement duration was set at 736 ms
(Sabes and Jordan 1997) and a sampling interval of 9.8 ms was chosen
which defined 75 points along the path. A postmovement period of
500 ms (51 points) in which no motor command was generated was
included to assess the error at the end of the movement.
To determine the motor command needed to achieve a candidate

trajectory and the effects of signal-dependent noise on this command,
the arm was modeled with two links moving in the horizontal plane
(upper:lower link lengths, 0.315:0.459 m; center of mass, 0.13:0.15
m; mass, 0.9:1.1 kg; inertia, 0.0201:0.0453 kg/m2; joint viscosity, 0.4
Nms/rad; joint stiffness was assumed to be dominated by stiffness of
the muscles which is modeled separately) (Kawato 1996). Torques at
each joint were generated by a linear second-order muscle, with time
constants 30 and 40 ms (van der Helm and Rozendaal 2000). To
determine the motor commands, the muscle model needs to possess 1)
the ability to invert and 2) an order no higher than of two. With a
higher order muscle and a quintic spline, the motor command would

FIG. 1. A: schematic of obstacle avoidance task. Two positions in the
workspace are shown. The dark gray circles and wedges indicate the start,
target, and obstacle, which are enlarged in B. On successive trials, the obstacle
tip remains in the same place, and the start, target, and obstacle rotate together
about the tip so that all obstacle angles are sampled. The pale circles and
wedges are an example of a different obstacle orientation. B: detail of the
obstacle avoidance task. The dark gray wedge is the obstacle, and the dashed
line is the obstacle axis. Start and target locations (dark gray circles) were 25
cm apart, and the obstacle was 8 cm long. The near-point (open circle) is the
point on the path (thin solid line) closest to the obstacle tip. The obstacle angle
(pale gray) is the angle between the obstacle axis and the 3 o’clock reference
line (heavy black line). The near-point angle (mid gray) is the angle between
the near-point and the obstacle axis.
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become discontinuous because the overall order of the system would
be greater than four (requiring more than 4 differentiations of the
trajectory). We therefore chose a second-order linear muscle, as we
have previously shown that using this simple representation we are
able to model both the point-to-point arm trajectories and the two-
thirds power law (Harris and Wolpert 1998).
Using inverse kinematics and dynamics, the motor command re-

quired to generate the candidate trajectory was determined. To eval-
uate the cost of the movement, the motor command (that is, the input
to the muscle model) was corrupted by signal-dependent noise and the
mean-squared error at the end of the movement was calculated. This
was achieved using a new computationally efficient algorithm called
the unscented transformation (Julier and Uhlmann 1995, 1996). The
unscented transformation works by propagating the arm’s state vari-
ables through the model of the arm for a particular noise distribution
on the motor command and achieves an unbiased estimate of the mean
and covariance of the path for every time step (see APPENDIX for
details).
For each point along the trajectory, the covariance matrix Ct,

representing the variability in hand position at time t, was calculated.
We then calculated a hit index Ht for each time step, which indicated
whether the collision probability at that time step had been exceeded.
This was achieved by constructing a covariance ellipses scaled to the
appropriate collision probability (for example, for a collision proba-
bility of 2.3% a contour ellipse at 2 SDs was constructed) and testing
if the ellipse intersected the obstacle (Ht ! 1) or not (Ht ! 0). The
cost of a candidate path was taken as Trace [CT] " K !t!1

T Ht, where
T is the movement duration. K was chosen as large enough (1000) so
that after optimization Ht was zero for all time steps; that is, the
collision probability was never exceeded. In other words, after opti-
mization the cost was always Trace [CT], that is, the mean-squared
error of the final hand position.
The six free parameters, that is, the (x, y) coordinates of the three

interior knots of the path, were optimized using simulated annealing
(Kirkpatrick et al. 1983; Metropolis et al. 1953; Press et al. 1992). The
initial setting of the interior knots placed the first and third free knots
16 cm apart and 2 cm beyond the obstacle tip and the second free knot
6 cm beyond the obstacle tip in line with the obstacle axis, so as to
give a symmetric path that avoided the obstacle. Unlike gradient-
descent methods which always aim to go “downhill,” thereby reduc-
ing the cost at every cycle of the optimization, simulated annealing
can allow the cost to increase, which helps the algorithm avoid local
minima. Specifically, a change in the knots is accepted if the cost
decreases or if the cost increase is less than the temperature parameter
multiplied by a logarithmically distributed random number. As the
simulated annealing progresses, the temperature gradually decreases,
in our case by a factor of 10 every 100 cycles, where each cycle tests
a set of seven candidate trajectories. The annealing was scheduled to
restart using the optimal vertices and a Gaussian perturbation (! ! 0,
" ! 0.05 m) on each sub-optimal vertex for five optimizations in
succession, because pilot simulations revealed that the final cost fell
by a small amount when extra optimizations were performed. There-
fore, we found the movement trajectory that maximized accuracy
while keeping the probability of hitting the obstacle below a fixed
limit. Using the optimized knots, we were also able to generate
trajectories from the optimal motor command corrupted by signal-
dependent noise and to compare these noisy trajectories to those
observed (Sabes and Jordan 1997).
Two factors were varied in the simulations, the coefficient of

variation of the signal-dependent noise (CVN) and the permitted
collision probability (CP). Five levels of motor command noise with
CVN of 0.15, 0.20, 0.22, 0.25, and 0.30 were examined with a CP of
2.3%. In addition, five CPs of 0.6, 1.3, 2.3, 3.6, and 6.6% were
examined with the CVN of 0.22. Four further simulations were
performed to determine the interaction of these factors, testing every
combination of the extreme values of CP and CVN.
In accord with the empirical studies (Sabes and Jordan 1997), our

analysis focused on the distribution of near-points, that is, the location
on the path which is nearest to the obstacle tip. The angular deviation
of the near-point from the obstacle axis, referred to as the near-point
angle (#), was examined as a function of obstacle angle ($ ) (see Fig.
1B). Previously it has been shown (Sabes and Jordan 1997) that the
near-point angle is linearly related to the deviation of the obstacle
angle from a preferred axis (% ) with a slope (&); that is, # ! &(% #
$ " n') for integer n, with n chosen such that (% # $ " n') lies
between #' and '. In this cyclical linear model, "' and #' are
equivalent, so for stability we fit the simulated data and the original
data from Sabes and Jordan (1997) using the set of three lines # !
&(% # $ " n') for n ! #1, 0, 1. For each possible value of % , each
data point was fitted to the line that gave the least-squared error.
Standard linear regression was used to obtain the value of & associated
with this % , and the values of & and % that gave the smallest total error
were taken as the fitted values. The preferred axis % can be interpreted
as the axis that the near-points cluster toward, and the slope parameter
& can be interpreted as the degree of clustering toward this axis, or the
amount of skewing in the hand paths: If & were 0, the near-point
distribution would be uniform and the movement paths symmetric,
and higher values of & indicate greater clustering of near-points
toward the preferred axis and more skew in the movement paths.

R E S U L T S

The simulations found the optimal path for each obstacle
angle in a mean of 1070 cycles (SD 48.5). Overall, 0.5% of the
movements performed by the simulations did not optimize as
required and produced paths with too high a collision proba-
bility; these paths were excluded from further analysis. Typical
optimal paths are shown in Fig. 2 (heavy dashed line) for eight
obstacle angles from the simulation with a CVN of 0.22 and a
CP of 2.3% (the middle setting of each parameter). The co-
variance ellipses along the path show two SDs from the mean,
and, as required, do not intersect the obstacle, thus ensuring a
collision probability at any point along the path below 0.023.
The solid lines are the individual paths taken from the five
subjects from Sabes and Jordan (1997). The simulated and
actual trajectories are qualitatively similar and the near-points
for the actual (filled circles) and simulation (empty circles)
paths are also similar. For example, most obstacle angles (Fig.
2, A–E) show skewed simulated and observed paths in which
the near-points fall to one side of the obstacle axis (fine dashed
line), while others (Fig. 2, F–H) are more symmetric, with
near-points aligned along the obstacle axis. It is not possible to
compare the dispersion of the trajectories in more detail than
by observation, because Sabes and Jordan’s five subjects each
performed only one movement at each obstacle angle.
A typical subject’s observed distribution of near-points (cir-

cles and crosses) show a preferred axis (dashed line) for the
two positions in the workspace (Fig. 3, A and C). The equiv-
alent near-points for a set of noisy paths simulated from the
optimal path show a similar preferred axis (Fig. 3, B and D).
The near-point distribution for the optimal paths (not shown) is
similar to that for noisy paths, but as expected the optimal
near-points cluster closer together than the noisy near-point
distribution. The preferred axis can also be seen in the plots of
near-point angle against obstacle angle (lower panels, Fig. 3).
The pattern of near-points was fit with a cyclical linear model
(dashed lines) relating the deviation of the near-points from
uniformity to the difference between the obstacle axis and a
fixed preferred axis. This shows a good qualitative fit between
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the cyclical linear models for this subject’s near-point data and
the simulated data.
In total, 13 simulations were carried out to compare the

effects of changing the CVN or the CP. The performance of

each simulation can be summarized in terms of the preferred
axis and slope parameter from the cyclical-linear model, and
the mean trace of the final covariance ellipse for the optimal
trajectory. Figure 4 compares these performance measures for
the nine simulations that hold one parameter at its middle setting
and vary the other (solid lines and filled symbols), and for the
four simulations examining combinations of the extreme val-
ues of each parameter (dashed lines and open symbols).
As expected, as the CVN increased or the CP decreased, the

trace of the final covariance ellipse increased (Fig. 4, E and F).
Similarly, the slope parameter increased with increasing CVN
and with decreased CP (Fig. 4, C and D). Therefore, increasing
the difficulty of the task either by increasing noise or by
reducing collision probability increases the extent of path
skewing as revealed by the slope parameter. The preferred axis
was little affected by any change in the parameters of the
simulations (Fig. 4, A and B). The orientation of the final
variance ellipse was also unaffected: the mean change in ori-
entation between simulations was 4.9° and the maximum change
was 20°. The trends for the simulations that used extreme param-
eter values (dashed lines) are similar to those for the interme-
diate values (solid lines), and a significant interaction between
the CP and CVN was only found for the slope parameter in
position 1. The similar fits obtained across a range of CVN and
CP values suggest that the simulation results do not depend
heavily on the precise choice of these free parameters.
Confidence limits on each fit were obtained by bootstrapping

(Efron 1982) and used to compare the two positions in the
workspace (Fig. 4, position 1: gray symbols; position 2: black
symbols). This revealed that the preferred axis was signifi-
cantly higher in position two than position one for every
simulation and that the slope parameter was significantly
higher in position two than position one for some simulations.
To evaluate the performance of the simulations against the

observed data, the slope parameter and preferred axis for the
observed data (averaged over 5 subjects) were compared with
the slope and preferred axis found for five near-point distribu-
tions (Fig. 5). These distributions were obtained from move-
ments executed with noise using the simulation with a CP of
2.3% and a CVN of 0.22 (the middle setting of each parame-
ter). t-tests revealed no difference between the preferred axes
in position one (t ! 1.19, df ! 8, P ! 0.27) or position two
(t ! 0.92, df ! 8, P ! 0.39), and no difference in the slope in

FIG. 2. Comparison of simulated and actual hand paths. The short dashed
lines show the optimal path for each movement, and the pale ellipses show the
97.7% confidence ellipses of the path at each point. The open circles indicate
the near-point of the optimal path. These data are taken from the simulation
with a coefficient of variation of the signal-dependent noise (CVN) of 0.22 and
a collision probability (CP) of 2.3%. Each thin black line shows a single trial
from 1 of the 5 subjects performing the obstacle avoidance task (data from
Sabes and Jordan 1997), and filled black circles show the near-points. Eight
different obstacle angles are illustrated, all taken from position 1.

FIG. 3. Near-point distributions from ob-
served and simulated trajectories in two po-
sitions (crosses are for clockwise movements
and circles for counter-clockwise move-
ments). A: near-point distributions in Carte-
sian space observed in human performance
for position 1 (data from Sabes and Jordan
1997). Dashed lines show the preferred axis.
B: near-point distributions on paths generated
with noise by the simulation with CVN! 0.22
and CP ! 2.3% in position 1. C: observed
near-point distribution for position 2. D: simu-
lated near-point distribution for position 2.
E–H: the same data plotted as the near-point
angle against the obstacle angle. The dashed
lines show the fit to the cyclical linear model
for each data set. The preferred axis is the
intercept of the fit line with the x-axis and the
slope parameter is the slope of the fit line.
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position one (t ! 0.96, df ! 8, P ! 0.36) or position two (t !
0.49, df ! 8, P ! 0.64).
The fit between the observed data and the mobility ellipse

model proposed by Sabes and Jordan (1997) was also evalu-
ated, and it was found that there was a significant difference
between the observed and predicted preferred axes for position
one (t ! 3.88, df! 4, P ! 0.017), but not for position two (t !
2.66, df ! 4, P ! 0.056).

D I S C U S S I O N

We have modeled obstacle avoidance within the TOPS
framework, in which the optimal trajectory is defined as the
one that minimizes the mean-squared error at the end of the
movement while keeping the probability of collision at each
point along the path below a fixed limit. The optimal paths
showed systematic deviations of the near-point (the point
where the path came nearest to the obstacle) in accord with the
empirical data. This deviation was characterized for both op-
timal and observed paths by the preferred axis, where the
deviation is minimal, and a slope parameter that determines the
extent of the deviation at other orientations. These parameters
were not significantly different for the observed (Sabes and

Jordan 1997) and optimal near-point distributions. In particular
the optimal preferred axes were closer to the observed values
when compared with the previous proposed model based on the
mobility ellipse. Furthermore, the TOPS framework allows the
central tendencies and its dispersion to be modeled rather than
just the preferred axis. Therefore, the slope parameter can be
obtained for the optimal trajectory and was shown not to be
significantly different to that observed.

Assumptions

To determine the optimal trajectory with the TOPS model,
we have made several assumptions. The first assumption is that
the optimal feedforward trajectory is a good representation of
the optimal feedback trajectory. We have modeled TOPS as-
suming no feedback, as feedback control with signal-depen-
dent noise is currently an active but unsolved area of control
theory (Lu and Skelton 2000). Interestingly, for linear systems
the average optimal feedforward path is the same as the aver-

FIG. 4. Comparison of performance of the different simulations. Gray lines
and symbols show data from position 1, and black lines and symbols show data
from position 2. Simulation parameter settings are indicated in the legend and
x-axis labels. A and B: preferred axis found for each simulation; error bars are
95% confidence limits. C and D: slope parameter for each simulation; error
bars are 95% confidence limits. E and F: mean trace of the final variance
ellipse for each simulation; error bars are SE.

FIG. 5. Comparison of preferred axis and slope parameter between the
simulated and observed data. A: mean slope parameter obtained for 5 noisy
runs of the simulation with a CVN of 0.22 and a CP of 2.3% and for all 5
observed subjects. Error bars are 1 SD. B: preferred axis obtained from the
same data with error bars as before, and the preferred axis predicted by the
mobility ellipse.
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age optimal feedback path. However, other characteristics of
the path such as frequency may differ and the movements with
feedback will be more accurate; this may explain why the
movements observed by Sabes and Jordan have a smaller
dispersion than the simulated movements (see Fig. 1). We have
previously shown that TOPS provides a good model for feed-
forward movement, such as saccadic eye movements and fast
arm movement (Harris and Wolpert 1998). We have also
shown that we can model slower feedback movement and
characterize the average trajectory, such as slow arm move-
ment and drawing movements, in which TOPS reproduces the
two-thirds power law (Harris and Wolpert 1998; Viviani and
Terzuolo 1982). Therefore, it seems that even with the nonlin-
earity of the arm we can model the average behavior under
feedback using a feedforward optimal control model.
The second assumption is in the specific parameters we have

used to model the arm and the noise. We have previously
shown that optimal trajectories are not sensitive to the exact
parameters of the arm model (Harris and Wolpert 1998). Also,
both the preferred axis and the slope parameter did not vary
substantially over a wide range of collision probabilities or
coefficient of variation of the noise. Therefore, our simulations
are not heavily dependent on the choice of parameters.

Relation to other models

There is clearly a relation between the proposal of Sabes et
al. (1997, 1998) and the TOPS model of obstacle avoidance, in
that mobility and the consequences of signal-dependent noise
are related. Given noise in the torque, the mobility ellipse
describes the variability in the Cartesian acceleration of the
hand, which Sabes and Jordan (1997) relate to the preferred
axis. However, the mobility ellipse cannot predict the slope
parameter because it only defines the axis that near-points
cluster toward, not the degree of clustering. Although the ratio
of the major-to-minor axis of the mobility ellipse is likely to be
related to the slope (for example, a higher ratio will go with a
higher slope), knowing the ratio does not allow us to predict
the actual value of the slope parameter. In the TOPS model the
precise way in which the noise plays through the motor system
is determined not only by inertia, as in the mobility ellipse
model, but also by the dynamics of the muscle and the moving
arm. Because TOPS is able to model the whole trajectory of the
obstacle avoidance movement, it is able to make more detailed
and general predictions than the mobility ellipse model.
The TOPS model also differs from other models of trajec-

tory planning (Flash and Hogan 1985; Uno et al. 1989), which
describe only the optimal trajectory, and do not consider the
dispersion of trajectories which result from performing move-
ments in a noisy system. These previous models predict a path
that passes as close as possible to the obstacle, which is not
seen in studies of obstacle avoidance (Abend et al. 1982; Sabes
and Jordan 1997). Although it would be possible to more
accurately simulate curved movements using these models by
placing via-points (Abend et al. 1982; Viviani and Terzuolo
1982), no model has been proposed which could determine
their location. In contrast, we have shown that the TOPS
framework allows for curved movements without any explicit
specification of a via-point.
For TOPS to be an account of motor planning, several

processes have to take place within the CNS. First, there must

be signal-dependent noise on the motor command. As already
mentioned, such signal-dependent noise can be seen behavior-
ally in isometric tasks (Schmidt et al. 1979; Slifkin and Newell
1999) and in movement tasks (Fitts 1966). At the neurophys-
iological level, several studies (for example, Andreassen and
Rosenfalck 1980; Clamann 1969; Matthews 1996) have shown
variability in firing of motor neurons, that is, a constant coef-
ficient of variation in motor unit interspike intervals. Such
variability together with the recruitment pattern can be shown,
through simulation, to lead to signal-dependent noise in muscle
force output (A. Hamilton, K. E. Jones, and D. M. Wolpert,
personal communication). This arises from the following two
sources: variability in the motor neuronal firing and the recruit-
ment pattern. As force output increases, the size of units
recruited increases, leading to larger variability.
Second, the cost of a movement must be evaluated. In the

TOPS framework the cost is movement error, which is behav-
iorally relevant and simple for the CNS to measure, unlike the
cost functions in many other optimal control frameworks.
Although we have minimized the mean-squared error in a
batch fashion over multiple trajectories, the CNS gets to ex-
perience one movement at a time. It would be possible to
calculate the average error, but it is more likely that the error
on each trajectory is used to update the controller, with a slow
learning rate. This effectively averages over recently experi-
enced movements without the need to store previous errors.
There is evidence that the cerebellum represents the error
signal of each movement. For example, Kitazawa et al. (1998)
recorded from the cerebellum as monkeys reached to a target.
They found that complex spike firing conveyed information
about the error in hand position and proposed that this signal
may be used for learning movements.
Third, the trajectory must be updated to reduce the cost.

Although we have solved the optimization problem using a
feedforward motor command, we do not believe that this is the
mechanism used neurophysiologically to generate movements.
In general, a feedforward optimal control problem can be
reformulated as an optimal feedback controller. For example,
Hoff and Arbib (1993) showed that a feedback controller can
be constructed to generate minimum jerk trajectories and that
this feedback controller can deal with perturbation during the
movement, such as target movements. Therefore, the error
signal into the TOPS model could be used to tune a feedback
controller so that it generates more optimal solutions. This
obviates the need to re-solve the optimal control problem each
time a new movement is made and can also be used on-line to
compensate partially for noise arising during the movement.
Although the neural location of such adaptation is not known,
we speculate that the cerebellum may combine both adaptive
feedforward and feedback controllers which are updated by the
error signals already described.
Finally, we believe that uncertainty is a fundamental prob-

lem in sensorimotor control. The motor system has to cope
with incomplete information about the world and with noise in
both its sensory inputs and its motor commands. Analysis of
the role of uncertainty in the CNS has been valuable in under-
standing perceptual judgment (Britten et al. 1993; Gold and
Shadlen 2000) and decision-making (Platt and Glimcher 1999).
We suggest that examination of the role of noise and uncer-
tainty in relation to the motor systems will form an important
and productive theme in the future. We also believe that the

2439CONTROLLING STATISTICS OF ACTION: OBSTACLE AVOIDANCE

J Neurophysiol • VOL 87 • MAY 2002 • www.jn.org



TOPS framework can be extended to almost any task. For
example, to achieve accurate throwing, we could optimize the
final position of the thrown object. This might favor certain
types of correlation between the position and velocity of the
hand at the moment of release, perhaps a faster speed if we
release too early or a slower speed if we release too late in the
trajectory. Therefore, by altering the motor command we could
control aspects of the full covariance of the state of our body.
In conclusion, we have applied the TOPS framework to

obstacle avoidance and have demonstrated that the model can
accurately predict the pattern of behavior observed. We sug-
gest that many types of movement can be planned by consid-
ering the statistics of action and that TOPS provides a potential
unifying framework for understanding goal-directed action.

A P P E N D I X

Given an n-dimensional variable x, with mean x and covariance
Pxx, the unscented filter (Julier and Uhlmann 1995, 1996) can be used
to estimate the distribution of y ! f (x). To do this, we construct a set
of 2n " 1 points X, each of which is assigned a weighting Wi

X0 ! x W0 ! ($%n " (&

Xi ! x " %"%n " (&Pxx&i Wi ! 1$2%n " (&

Xi"n ! x # %"%n " (&Pxx&i Wi"n ! 1$2%n " (&

where ("(n " ()Pxx)i is the ith row of the matrix square root of
(n " ()Pxx. These points are chosen so that they give an unbiased
representation of the mean and covariance of the original distribution.
Each point is transformed through the nonlinear function f to give yi !
f (xi). The new mean y and covariance Pyy can be found as

y ! !
i!0

2n

Wi yi Pyy ! !
i!0

2n

Wi 'yi # y ( 'yi # y (T

The new mean and covariance can be used to define a new set of
points X, and the process is iterated for every time step.
In the case of the arm model, the state variable x has 12 dimensions:

x! (q1, q2, q̇1, q̇2, q̈1, q̈2, tq1, tq2, tq̇1, tq̇2, u1, u2), where qi is the joint
angle, tqi is the torque, and ui is the motor command at the ith joint.
The nonlinear function f was the forward model of the muscles and
dynamics of the arm. We assume that the distribution of x(() is
Gaussian, and so, following Julier and Uhlmann (1995), chose (n "
() ! 3. At the start of movement, the covariance of the state is a
matrix of zeros. Variability in the state arises because at each time step
the SD of the motor commands is set to be linearly related to the
absolute value of the motor commands, with the constant of propor-
tionality given by variable CV.
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