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complex task into simpler subtasks each learned by a separate
module, has been proposed as a computational strategy during
learning'. We explore the possibility that the human motor
system uses such a modular decomposition strategy to learn the
visuomotor map, the relationship between visual inputs and
motor outputs. Using a virtual reality system, subjects were
exposed to opposite prism-like visuomotor remappings—discre-
pancies between actual and visually perceived hand locations—
for movements starting from two distinct locations. Despite this
conflicting pairing between visual and motor space, subjects
learned the two starting-point-dependent visuomotor mappings
and the generalization of this learning to intermediate starting
locations demonstrated an interpolation of the two learned maps.
This interpolation was a weighted average of the two learned
visuomotor mappings, with the weighting sigmoidally dependent
on starting location, a prediction made by a computational model
of modular learning known as the “mixture of experts”'. These
results provide evidence that the brain may employ a modular
decomposition strategy during learning.

A general strategy for learning is to divide a complex task into
simpler subtasks and learn each subtask with a separate module.
This strategy has been formalized into a computational model of
learning known as the mixture of experts', in which a set of expert
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modules each learn one of the subtasks and a gating module weights
the contribution of each expert module’s output to the final system
output. The gating module bases its weighting of each expert on its
estimate of the probability that this expert is the appropriate one to
use for the current task. During learning, the gating module
simultaneously learns to partition the task into subtasks while the
expert modules learn these subtasks. Such modular decomposition
has been proposed both as a model of high-level vision* and of the
role of the basal ganglia during sensorimotor learning’. The mixture
of experts model makes specific predictions regarding the nature of
learning which have not been tested empirically. Here we test the
hypothesis that the visuomotor system exhibits such modular
decomposition during learning.

Previous studies have shown that the motor system is able to
adapt to multiple different perturbations. Subjects adapt increas-
ingly readily when presented repeatedly with two different prismatic
displacements separated temporally®’, a process which is mediated
by posterior parietal cortex®. Similarly, subjects adapt to multiple
perturbations if cued by gaze direction®'!, body orientation'?, arm
configuration®, an auditory tone' or the feel of prism goggles”™"".
One hypothesis to account for these studies is that multiple
visuomotor mappings are stored simultaneously, suggesting a
modular system. However, alternative explanations, such as a
general increase in adaptability, or a single, non-modular system
that is responsive to inputs from many modalities, cannot be ruled
out from these studies. In particular, it is not clear whether the
outputs of separate modules can be appropriately combined for
contexts not already learned. Here we probe the existence of
multiple modules by testing the specific predictions of a computa-
tional model of modular learning.

We investigated a learning paradigm in which the visual feedback
of the hand was perturbed during pointing movements so that a

Target location Starting location

Visuomotor
Expert 1

Visuomotor
Expert 2

Gating module
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Starting location

Motor output

m=pm, + (1-p) m,

Figure 1 A modular decomposition model of visuomotor learning in which two
different maps can be learned for the same visual target location. This represents
the simplest instantiation of the hierarchical mixture of experts?, having only one
level and two experts. The model maps target and starting locations to motor
outputs, m, which could represent, for example, the final hand location or
movement vector. Each expert learns a different mapping between target loca-
tions and motor outputs. The contribution of each expert's output, m; and m,, to
the final motor output, m, is determined by the gating module's output, p. The
output p reflects the probability that expert 1 is the correct module to use for a
particular starting location; at p values of 1 or 0 the final output is determined
solely by the output of expert 1 or expert 2 respectively, whereas at intermediate
values of p both experts contribute to the final output. The logistic form of the
gating module’s output as a function of starting location can be derived by
assuming that each expert learns the visuomotor map at one of the two starting
locations—its preferred starting location—and that each expert is responsible for
an equal size gaussian region around this preferred starting location.
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single location in visual space was remapped to two different hand
positions depending on the starting location of the movement (see
Methods). This perturbation creates a conflict in the visuomotor
map of the arm, the internal model'® of the kinematics of the arm
which captures the normally one-to-one relation between visually
perceived and actual hand locations'™*'. One way to resolve this
conflict is to develop two separate visuomotor maps, the expert
modules, each appropriate for one of the two starting locations
(Fig. 1). A separate mechanism, the gating module, then combines,
based on the starting location of the movement, the outputs of the
two visuomotor maps. The output of the gating module, which
represents the weighting given to each visuomotor map for a given
starting location, has a sigmoidal (logistic) shape, as a function of
the starting location of the movement (Fig. 1). This relationship
results from the assumption that each expert is responsible for an
equal variance gaussian region around its preferred starting
location®, which corresponds to its receptive field. As in previous
studies of the visuomotor system®~*, the internal structure of the
system can be probed by investigating the generalization properties
in response to novel inputs, which in this case are the starting
locations on which it has not been trained. The hallmark of a system
with modular decomposition is the ability to learn both conflicting
mappings, and to transition smoothly from one visuomotor map to
the other in a sigmoidal fashion as the starting location is varied.
Subjects were exposed in a virtual reality setup to two different
visuomotor perturbations, discrepancies between the actual and
perceived hand location, depending from which of two possible
starting locations the movement originated (L2 and L6 in Fig. 2; see
Methods). Although subjects were unaware of the perturbation,
they showed significant adaptive changes in their pointing beha-
viour when starting from locations L2 and L6 (Fig. 3b—d). The
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Figure 2 The perturbations used for the four groups of subjects (a-d).
Movements were made in the horizontal plane and the schematic shows the
seven possible starting locations (L1-L7) and the target (T) seen from above. Solid
lines indicate the actual path taken by the hand during the exposure phase;
dotted lines indicate the visually displayed path of the hand. For the control group
(a) the two lines coincide everywhere as there was no perturbation and therefore
no discrepancy between the visually displayed and actual hand location. For the
perturbation groups, a discrepancy between displayed and actual hand position
was introduced (see Methods for details). The discrepancy was chosen so that
subjects, in order to perceive their hand visually on target T, had to point to two
different locations, P2 and P86, depending on whether the movement started from
L2 or L6.
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adaptation seen for movements from these two points was signifi-
cantly different from each other (P < 0.001), showing that the
subjects were able to learn two distinct remappings of the same
point in visual space as a function of the starting location. Further-
more, as the starting location was varied between L1 and L7, a
smooth transition was seen in the change in pointing behaviour
which reflects visuomotor learning (Fig. 3b—d).

We estimated the mixing proportion (‘p’ in Fig. 1) by fitting the
changes in pointing behaviour at each starting location to a
weighted mixture of the adaptation observed for movements start-
ing from L6 and L2. These estimates show a significant modulation
over the starting locations (Fig. 4) for groups b—d (P < 0.001), but
as expected, not for the control group (P > 0.05), who showed no
change in pointing behaviour. The modulation in groups b—d gave a
significantly better fit to a logistic function, the mixing probabilities
predicted by the modular decomposition model, than to a linear
function (P = 0.02).

The hypothesis of modular decomposition can be contrasted with
models in which a single visuomotor transformation is computed.
Models in which the transformation is based solely on the visual
location of the target cannot account for the two mappings learned
for the same point in visual space. Alternatively, a single visuomotor
transformation may take in as inputs both the visual location of the
target and the movement starting location. The manner in which
such a single module would generalize to new starting locations
depends crucially on the internal structure of the module. For
example, a linear constraint model® predicts a corresponding linear
pattern of generalization, which was not observed in the data (Fig.

4b—d). In a previous study”® we have shown that the visuomotor |

map shows limited generalization to a novel, starting-location-
independent remapping, suggesting a local receptive field structure.
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Figure 3 Adaptation of the visuomotor map for the control (a) and perturbation
groups (b-d). For each starting location (L1-L7, denoted by shading), the 95%

confidence ellipse for the change in pointing behaviour, induced by the |

visuomotor perturbation, is shown. For clarity, the centre of the ellipses, which
represents the change in pointing behaviour, is also indicated numerically by the
starting location (for example, 3 corresponds to the change in pointing for
movements starting from L3). The change in pointing corresponding to the
learned starting points L2 and L6 are indicated by the arrows. For the perturbation
groups, significant changes in pointing are seen, corresponding to partial
adaptation to the remappings introduced. These changes in pointing smoothly
shift as the starting location varied between L1 and L7. As well as the changes in
response to the perturbation, there was a starting-point-independent movement
overshoot for the perturbation groups, accounting for both the Y offset of the
means in b and d and the additional right-to-left shift seen in c.
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If a single visuomotor module showed similarly local receptive
fields, both in visual space and starting location, the predicted
adaptation would be maximal at starting locations L2 and L6 and
decay away from these points, a pattern not supported by the data.
Our study indicates that two different maps can be learned for the
same point in visual space and that the generalization to starting
locations at which the subject was not exposed to the perturbation
has the logistic relationship predicted by the mixture of experts
model. These results provide evidence that modular decomposition
is a feature of visuomotor learning.

These findings can be interpreted through the hypothesis that the
visuomotor system maps visual vectors, pairs of target and starting
locations, into movement vectors. Evidence for such vector-based
coding has been obtained in neurophysiological studies which
suggest that populations of cortical cells code for direction of
movement’®?. Similarly, it has been shown that a set of limb
postures, which specify endpoints, can be achieved by stimulation
of specific areas of the spinal cord, and that simultaneous stimula-
tion of two such areas elicits a large repertoire of intermediate
postures®. According to either of these hypotheses, our results show
that learning two new visuomotor mappings, whether represented
as vectors or postures, at the two starting locations, leads to a
smooth sigmoidal generalization at intermediate locations. This
generalization is consistent with a gradual mixing, modulated by
starting location, of two separate neuronal populations, each of
which has learned a different visuomotor mapping. This suggests a
simple and plausible neural mechanism by which the modular
learning observed could have arisen in the visuomotor system. [
Methods
Thirty-two right-handed participants, who were naive to the purpose of the
experiment and gave their informed consent, were randomly assigned to one of
four groups: a, b, c and d.

Setup. Subjects sat at a large horizontal digitizing tablet with their head
supported by a chin and forehead rest (a complete description of the set-up can
be found in ref. 29). Subjects held a digitizing mouse with their right index
finger tip mounted on its cross hairs — direct view of their arm was prevented
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by a screen. The targets and feedback of hand position were presented as virtual
images in the plane of the digitizing tablet, and therefore in the plane of the
hand. This was achieved by projecting a computer display onto a horizontal
rear projection screen suspended above the tablet. A horizontal front-reflecting
mirror was placed face-up midway between the screen and the tablet. The
subjects viewed the reflected image of the rear projection screen by looking
down at the mirror. By matching the screen—mirror distance to the mirror—
tablet distance, all projected images appeared to be in the plane of the hand
when viewed in the mirror. Targets were represented as 1-cm hollow squares
and the hand position was displayed as a 6-mm filled white square, the cursor
spot. The position of the hand was used on-line to update the position of this
cursor spot at 60 Hz. The relation between the actual hand location and the
hand cursor spot was computer controlled so as to allow arbitrary visuomotor
perturbations. Therefore the cursor spot could either accurately represent the
true location of the hand or computer-controlled discrepancies between the
cursor feedback and actual hand location could be introduced.

Paradigm. Subjects were asked to point to visually presented targets with their
right hand. The experiment consisted of three parts: pre-exposure, exposure,
and post-exposure. During pre- and post-exposure, subjects pointed to target T
(10 repetitions for groups a—c; 15 repetitions for group d) in the absence of any
visual feedback of the hand, starting from each of 7 starting locations (L1-L7;
Fig. 2). This allowed the accuracy of pointing in the absence of visual feedback
of hand location to be assessed for the 7 starting locations:

During the exposure phase, subjects repeatedly traced out a visual triangle
L2-L6-T-L6-L2-T-L2 forty times, thereby alternately pointing to the target
from L2 and L6, while receiving feedback of hand location via the cursor spot.
For the control group (Fig. 2a), the hand cursor spot accurately represented the
actual hand position at all times. For the perturbation groups (Fig. 2b—d),
displacements were surreptitiously introduced between the actual and visually
displayed hand location. The displacement introduced increased linearly with
distance from the starting location; the direction of the displacement varied
between the groups. For movements made during the exposure phase the sign
of the displacement was different for the two starting locations, L2 and L6. The
dotted lines in Fig. 2b—d show the path taken by the visual feedback of the hand
location and the solid lines the actual path taken by the hand. For example, for
group b a discrepancy was introduced so that visual feedback of hand position
was shifted to the left for movements made from L2, reaching a maximum

b
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Figure 4 The mixing proportions with 95% confidence limits as a function of
starting location for the a, control, and b-d, perturbation groups. For the ith
starting location, the mixing proportion p is computed to minimize the distance
between v;andpvg + (1 —p)V,, where v; is the mean adaptation vector for starting
location L. Using this criterion the values of p are fixed to be 0 and 1 at starting
locations L2 and L6 (indicated by filled circles), respectively. The values of p at
points other than L2 and L6 capture the form of the generalization as a function of
the two learned mappings at L2 and L6. Confidence intervals were computed on
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this measure using bootstrap resampling®. The mixing proportions for the control
group (a) did not differ significantly from the null hypothesis of equal mixing
(indicated by the line at 0.5). For groups b-d, a logistic function,
p@) = 1/[1+exp@ +bi)], representing the mixing probabilities predicted by the
modular decomposition model (Fig. 1), was fitted to the mean mixing proportions
(solid curve). All three fits were significant (P < 0.001) and the logistic function fit
was a significantly better fit than linear regression over the ensemble data sets
b-d (F(15,15) = 3.17; P = 0.02).
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discrepancy of 5cm when the visual feedback of the hand was on target. For
movements from L6, the visual feedback of hand position was shifted to the
right, again reaching a maximum of 5 cm. Consequently, the single visual target
location (T) was remapped to two distinct hand locations (P2 and P6 in Fig. 2),
depending on whether the movement started from L2 or L6, Movements
between L2 and L6 were unperturbed in all groups.

To assess learning and generalization to movements made from other
starting locations, the subjects’ change in pointing behaviour between the pre-
exposure and post-exposure phases was analysed for each starting location. For
each subject and start location, the average change in pointing position between
the pre-exposure and post-exposure phases was calculated, together with the
corresponding covariance matrices. The subjects’ data were combined within
each group for each starting location, obtaining the group mean change and the
covariance matrix of the change for each starting location. The change in
pointing from each starting location was plotted as a 95% confidence ellipse
centred on the mean change (Fig. 3).
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Huntington’s disease is a genetic disorder that results from
degeneration of striatal neurons, particularly those containing
GABA (y-aminobutyric acid)'. There is no effective treatment for
preventing or slowing this neuronal degeneration. Ciliary neuro-
trophic factor (CNTF) is a trophic factor for striatal neurons® and
therefore a potential therapeutic agent for Huntington’s disease.
Here we evaluate CNTF as a neuroprotective agent in a non-
human primate model of Huntington’s disease. We gave cyno-
molgus monkeys intrastriatal implants of polymer-encapsulated
baby hamster kidney fibroblasts that had been genetically
modified to secrete human CNTF. One week later, monkeys
received unilateral injections of quinolinic acid into the pre-
viously implanted striatum to reproduce the neuropathology
seen in Huntington’s disease®>. Human CNTF was found to
exert a neuroprotective effect on several populations of striatal
cells, including GABAergic, cholinergic and diaphorase-positive
neurons which were all destined to die following administration
of quinolinic acid. Human CNTF also prevented the retrograde
atrophy of layer V neurons in motor cortex and exerted a
significant protective effect on the GABAergic innervation of
the two important target fields of the striatal output neurons
(the globus pallidus and pars reticulata of the substantia nigra).
Our results show that human CNTF has a trophic influence on
degenerating striatal neurons as well as on critical non-striatal
regions such as the cerebral cortex, supporting the idea that
human CNTF may help to prevent the degeneration of vulnerable
striatal populations and cortical—striatal basal ganglia circuits in
Huntington’s disease.

Huntington’s disease (HD) is an autosomal dominant neuro-
degenerative disease characterized by progressive movement dis-
order, with devastating psychiatric and cognitive deterioration®.
Neuropathologically, HD is associated with a consistent and severe
atrophy of the neostriatum. Although multiple populations of
striatal neurons are affected in HD”®, the GABAergic medium-
sized spiny projection neurons are particularly vulnerable'. The
cognitive and motor symptoms of HD result from the vulnerability
of neostriatal neurons, possibly as a result of an endogenous
disequilibrium of energy metabolism and excitotoxicity’ . There
are no treatments available at present to slow neural degeneration in
HD or for the behavioural symptoms that result from this cell loss.
The administration of trophic factors may protect vulnerable

[l Present address: Alkermes, Inc., 64 Sidney Street, Cambridge, Massachusetts 02139, USA.
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