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In order to generate skilled and efficient actions, the motor system must find solutions to several problems
inherent in sensorimotor control, including nonlinearity, nonstationarity, delays, redundancy, uncertainty,
and noise.We review these problems and five computational mechanisms that the brainmay use to limit their
deleterious effects: optimal feedback control, impedance control, predictive control, Bayesian decision
theory, and sensorimotor learning. Together, these computational mechanisms allow skilled and fluent
sensorimotor behavior.

Introduction
The sensorimotor control system has exceptional abilities to
perform skillful action. For example as an opposing ice hockey
player skates in on the net and shoots, within a split second
the goalie reaches out, catches the puck, and prevents the
goal. However, there are several issues that make this a difficult
computational problem for the brain to solve. The first is uncer-
tainty: although the goalie sees the puck coming toward the
goal, he cannot be certain when and where the player will aim
or where the puck will actually go. Second, once the goalie esti-
mates the puck’s likely trajectory, he must determine which of
the over 200 joints and 600 muscles he will use in order to
move his body or stick to block the puck—this is the problem
of redundancy. Third, both his sensory feedback, such as the
puck’s visual location, and his motor outputs are corrupted by
noise. This noise in combination with the variable environment,
such as the unevenness of the ice surface, leads to variability
in both perception and action. Fourth, both the sensory
feedback processing and motor outputs are subject to delays,
with visual perception of the puck location, for example, already
around 100 ms out of date. The fifth issue is nonstationarity—
the system’s physical properties do not remain constant.
Throughout a game the goalie must correct for weaker muscles
as he fatigues, and changes in the ice surface. Finally, the entire
neuromuscular system is nonlinear: for example the output of
the muscle (force) is dependent on the descending activation
command in a complexly nonlinear manner based on the muscle
state. We will discuss each of these issues and then describe
five computational mechanisms that the sensorimotor control
system uses to solve the complex problem of motor control,
which it does with so much skill. Our primary focus will be at
the computational and behavioral level because, at present,
rather little is known about how these computations are imple-
mented. Our hope is that the neurophysiological community
will see ways in which different neural areas and circuits might
be mapped onto these computations.
Redundancy
The human motor system has a very large number of degrees of
freedom with around 600 muscles controlling over 200 joints.
These physical properties make the motor system redundant
because there are multiple, often an infinite number of, ways
that the same task could be achieved leading to an abundance

of possible solutions. For example when reaching from one point
in space to another, there are an infinite number of paths that can
reach the target and a variety of hand speeds along each
possible path. Moreover, there are an infinite number of joint
angle trajectories that can generate the specified hand path
and speed. Because most joints are controlled by multiple
muscles, the same jointmotion can be achieved both by different
combinations of muscles and with different levels of cocontrac-
tion or stiffness. Despite the apparent abundance of solutions,
humans and other animals are highly stereotyped in the type of
movements they choose to make. A major focus in sensorimotor
control has been to understandwhy and how one particular solu-
tion is selected from the infinite possibilities and how movement
is coordinated to achieve task goals.
Noise
Our nervous system is contaminated with noise, limiting both our
ability to perceive accurately and act precisely (Faisal et al.,
2008). Noise is present at all stages of sensorimotor control,
from sensory processing, through planning, to the outputs of
themotor system. Sensory noise contributes to variability in esti-
mating both internal states of the body (e.g., position of our hand
in space) and external states of theworld (the location of a cup on
a table). Noise also contaminates the planning process leading
to variability in movement endpoints (Gordon et al., 1994; Vind-
ras and Viviani, 1998) and is reflected in neuronal variability of
cortical neurons that can predict future kinematic variability in
reaching (Churchland et al., 2006). In addition, variability in action
can arise through noise in motor commands (van Beers et al.,
2004). Importantly, the noise in motor commands tends to
increase with the level of the motor command (Jones et al.,
2002; Slifkin and Newell, 1999), termed signal-dependent noise.
There is evidence that the major reason for the signal-dependent
nature of this variability may come from the size principle of
motor unit requirement (Jones et al., 2002).
Delays
Delays are present in all stages of sensorimotor system, from the
delay in receiving afferent sensory information, to the delay in our
muscles responding to efferent motor commands. Feedback of
sensory information (that we take to include information about
the state of the world and consequences of our own actions) is
subject to delays arising from receptor dynamics as well as
conduction delays along nerve fibers and synaptic relays. These
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delays are on the order of 100 ms but depend on the particular
sensory modality (e.g., longer for vision than proprioception)
and complexity of processing (e.g., longer for face recognition
than motion perception). Therefore, we effectively live in the
past, with the control systems only having access to out-of-
date information about the world and our own bodies, and with
the delays varying across different sources of information. In
addition there are delays on the efferent control signals, both in
terms of neural conduction delays and the low-pass properties
of muscle. Although the fastest conduction delays, such as
the monosynaptic stretch reflex pathway, are on the order of
10–40 ms, depending on the length and type of nerve fiber, this
delay increases by 20–30 ms for the cortical component of the
long-latencystretch reflex response (Matthews, 1991).Moreover,
the rise in the force generation within a muscle (termed the elec-
tromechanical delay) can take another 25ms (Ito et al., 2004). This
means that a descending command from the motor cortex takes
around 40 ms to produce force in the muscle because the
conduction delay from the motor cortex to the arm muscles is
around 16 ms (Merton and Morton, 1980). Other modalities can
take even longer, with the delay in involuntary motor responses
due to visual stimuli of around 110–150 ms (Day and Lyon,
2000; Franklin and Wolpert, 2008; Saijo et al., 2005). Even the
vestibulo-ocular reflex, one of the fastest involuntary responses
due to the short connections, takes 10 ms from stimulus onset
(Aw et al., 2006). At one extreme, such as a saccadic eye move-
ment, the movement duration is shorter than the sensory delay,
meaning that feedback cannot be used to guide the movement
because the sensory information regarding the movement itself
arrives after the completion of the movement. For slower move-
ments, delays make control difficult because information can be
out of date, and it is possible for the system to correct for errors
that no longer exist, leading to potential instability.
Uncertainty
Uncertainty reflects incomplete knowledge either with regard to
the state of the world or of the task or rewards we might receive.
Although uncertainty about the present state can arise from both
noise and delays, there are many other sources of uncertainty;
for example, it can arise from the limitations in receptor density
and the representation of an analog world with the digital neural
code. Uncertainty can also arise from the inherent ambiguity in
sensory processing, such as ambiguity that arises when the
three-dimensional world is projected onto the two-dimensional
retina (Yuille and Kersten, 2006). Other components of uncer-
tainty arise from the inherent ambiguity of the world. When we
first see or even handle a new object, we may be unsure of its
properties such as its dynamics. Similarly, when we first experi-
ence a novel environment, such as forces applied to the arm
during a reaching movement (Shadmehr and Mussa-Ivaldi,
1994), we only receive partial information about the environ-
mental properties even if we had perfect sensory information.
Other situations, such as those that are unstable (Burdet et al.,
2001) or unpredictable (Scheidt et al., 2001; Takahashi et al.,
2001), add to uncertainty about the environment. Moreover, in
the real world outside the laboratory, we can be uncertain what
our tasks are and which actions or tasks might lead to reward
rather than punishment. Such uncertainty makes the control
problem more difficult.

Nonstationarity
Themotor system is also nonstationary, in that its properties can
change onmultiple timescales. Throughout growth and develop-
ment, the properties of our motor system change dramatically as
our limbs lengthen and change in weight. Similarly, our muscles
become stronger, so that similar activation patterns give rise to
larger forces. Nerve conduction delays initially decrease in the
first 2 years after birth but then increase in proportion to the
lengthening of the limbs (Eyre et al., 1991). As we age, other
changes occur with delays becoming larger (Dorfman and
Bosley, 1979) and muscle strength decreasing (Lindle et al.,
1997) due to the decrease in cross-sectional area (Jubrias
et al., 1997) and changes in muscle fiber properties (Brooks
and Faulkner, 1994). Moreover, sensory acuity also decreases
with age, for example, visual acuity is reduced as we become
older (Owsley et al., 1983), adding uncertainty to the visual
feedback. On a shorter timescale the way our motor system
responds to our motor commands can change as we interact
with objects or as our muscles become fatigued. The ever-
changing nature of the motor system places a premium on our
ability to adapt control appropriately.
Nonlinearity
Control is further complicated by the highly nonlinear nature
of our motor system. In linear systems, once the response to
two different time series of motor command is known, it is
straightforward to predict the response to both applied together
as simply the sum of the responses. This makes control of linear
systems relatively simple, because by knowing the response of
the system to a simple input such as a pulse, one knows the
response to any arbitrary input. For nonlinear systems this is
no longer the case.
The descending motor command undergoes a highly non-

linear transformation as it is converted into endpoint force
or movement. Although the output from the nervous system
sets the activation level of the motor neuron pool, the number,
strength, and temporal properties of themotor units that are acti-
vated exhibit nonlinearity. Although the measured activation
level of muscle fibers exhibits a roughly linear relation with
muscle force in an isometric situation, this simple relation disap-
pears once the muscles and limbs move. The force of a muscle
depends on activation level in a very nonlinear manner with
respect to both the muscle velocity and muscle length and is
further affected by tendon properties (for a review see Zajac,
1989). In addition, the moment arms of muscles can vary by
a factor of three as the joint angles change during limb move-
ments (Murray et al., 1995, 2000). Finally, the multijointed, multi-
link structure of the skeleton, independent of the muscle, has
nonlinear dynamics. Even the simplified two-link structure of
the limbs during constrained reaching exhibits complex non-
linear dynamics (Hollerbach and Flash, 1982).
These nonlinearities within the motor system provide a major

challenge for the sensorimotor control system, even if none of
the other problems existed; however, the inclusion of these other
problems makes the task even more challenging. Progress has
been made into the computations that the sensorimotor system
can perform to alleviate these problems. The remainder of the
review will examine these computations and how they relate to
the five problems of sensorimotor control we have highlighted.
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Bayesian Decision Theory
Bayesian decision theory is a framework for understanding how
the nervous system performs optimal estimation and control in
an uncertain world. It is composed of two components, Bayesian
statistics and decision theory. Bayesian statistics involves the
use of probabilistic reasoning to make inferences based on
uncertain data, both combining uncertain sensory estimates
with prior beliefs and combining information from multiple
sensory modalities together, in order to produce optimal esti-
mates. We use the term Bayesian inference in this review to refer
to probabilistic reasoning and not simply to the application of
Bayes’ rule (see below). Based on these inferences, decision
theory is used to determine the optimal actions to take given
task objectives.
Multisensory Integration
Different sensory modalities can often sample the same informa-
tion about the state of our body (e.g., proprioceptive and visual
location of the hand) or the state of the external world (e.g., audi-
tory and visual location of a bird). When these different modal-
ities are experimentally put in conflict, for example by mismatch-
ing the vision and sound of a person speaking, the percept
corresponds to something intermediate between the percept of
each modality alone (McGurk and MacDonald, 1976). Recent
work has developed and tested the computational framework
that underlies such multisensory integration. Even for normal
sensory inputs, our sensory apparatus is variable and can have
biases. Therefore, the estimates from different modalities are
unlikely to be the same. Within the Bayesian framework, we can
ask what is the most probable state of the world that gave rise
to the multiple sensory inputs. Such a Bayesian model predicts
that a scalar estimate from two different modalities, such as the
visual and haptic width of a held object, should be weighted
and averaged to produce an optimal estimate. Critically, the
weighting of each modality should depend on its reliability (or
the inverse of its variability due to noise), with the more reliable
modality contributing more to the final estimate. Such a model
of multisensory integration is supported by experimental studies
of size estimation from visual and haptic cues (Ernst and Banks,
2002), location from visual and auditory cues (Körding et al.,
2007b), and has been suggested to explain ventriloquism (Alais
and Burr, 2004). Similar computations are used to estimate the
state of our body; for example, when combining visual and
proprioceptive information to estimate hand and joint location
(Sober and Sabes, 2005; van Beers et al., 1996). In addition to
integrating multiple modalities, a single modality can receive
multiple cues about the same stimulus. Again, these different
cues are combined optimally when estimating object size from
visual texture and motion cues (Jacobs, 1999) and depth from
texture and stereo cues (Knill and Saunders, 2003).
Bayesian Integration
Although multisensory integration combines information from
two cues or modalities, there is another source of information
available to refine estimates—the prior over possible states of
the world. The prior reflects that not all states are a priori equally
likely. For example, it may be that some configurations of the
body are more common than others (Howard et al., 2009), and
this prior distribution over configurations provides valuable infor-
mation that could be used in conjunction with proprioceptive

input to determine the current configuration. Indeed, mathemat-
ically, the prior can be considered analogous to another sensory
modality in that it provides information that is weighted with
sensory inputs depending on how reliable the prior is relative
to the sensory evidence. In general, Bayes’ rule states that
the probability of different states being correct (termed the
posterior) is produced by combining the probability of receiving
the sensory information if that state were true (termed the likeli-
hood) with the prior probability of that state (for a review see
Körding and Wolpert, 2006). The optimal estimate (or posterior),
obtained by the combination of the sensory information and prior
belief, always has lower uncertainty than the estimate based on
the sensory information alone. This means that Bayesian estima-
tion acts to reduce the uncertainty by combining sensory infor-
mation with prior information.
Whether the sensorimotor systemuses Bayesian learning, that

is, whether it learns to represent the prior and likelihood and
combine then in a Bayesian way, has been examined in a simple
task (Körding and Wolpert, 2004). During reaching movements,
a positional discrepancy was introduced between the subject’s
actual and visually displayed hand position. The size of the
discrepancy was drawn on each trial from a Gaussian distribu-
tion, thereby experimentally imposing a prior distribution on the
task. In addition, by varying the degree of visual blur, the reli-
ability of the visual feedback was manipulated from trial to trial,
thereby varying the likelihood. The subjects’ taskwas to estimate
on each trial the location of the cursor relative to their hand. The
results showed that subjects did this in a Bayesian way, suggest-
ing that they learned the prior distribution of the discrepancy,
had an estimate of how reliable visual information was so as
to estimate the likelihood, and combined these two sources of
information in a Bayesian manner. Further evidence of Bayesian
processing comes from work on force estimation (Körding et al.,
2004) and interval timing (Jazayeri and Shadlen, 2010; Miyazaki
et al., 2005). In fact Bayesian integration can also be used to
understand previous studies; for example the finding that
subjects tended to mistime the interception of a falling ball under
altered gravity conditions was interpreted as evidence that the
brain models Newton’s laws (McIntyre et al., 2001). However,
these results could arise from subjects optimally combining
sensory information about the speed of the falling ball with prior
information that gravity is constant on Earth. This would cause
the subjects to continually miss the ball until they revised their
prior estimate of the gravitational constant. Bayesian integration
can also explain many visual illusions by making assumptions
about the priors over visual objects (Kersten and Yuille, 2003)
or direction of illumination (Adams et al., 2004). Similarly, biases
in the perception of brightness (Adelson, 1993) can arise from
priors over possible states of the world. Together, these studies
show that Bayesian integration is used by the nervous system to
resolve uncertainty in sensory information.
State Estimation
In the sections onmultisensory integration and Bayesian integra-
tion, we have focused on the static situation of receiving two
sources of information to inform us of the state (e.g., the width
of an object). However, sensorimotor control acts in a dynamic
and evolving environment. For example we need to maintain
an estimate of the configuration of our body as we move so as
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to generate appropriatemotor commands. Errors in such an esti-
mate can give rise to large movement errors (Vindras et al.,
1998). Making estimates of time-varying states requires some
extension to the computations described above as well as the
need to consider the delays in sensory inputs.

Optimal state estimation in a time-varying system can be
considered within the Bayesian framework. As before, the likeli-
hood assesses the probability of receiving the particular sensory
feedback given different states of the body. The prior now
reflects the distribution over states. However, this prior is not
simply the distribution over all states but is the distribution over
states given our best estimate of the current distribution. This
can be calculated by considering our previous state estimate
(in essence the distribution over previous states) together with
the motor command we have generated to update the states.
The physics of our body and the world mean that the next state
depends on the current state and the command. In order for
the CNS to estimate the next state from the current state and
the command, a model of the body is needed to simulate the
dynamics. Such a predictive model is termed a forward model,
which acts as a neural simulator of the way our body responds
to motor commands. If the forward model is not perfect,
however, the estimate of the future state will drift away from
the actual state. Therefore, this estimate is combined with the
sensory inputs in a Bayesian way—with the prediction of the
state acting as the prior that is combined with the sensory
evidence.

For linear systems with noise on the sensory input and motor
output, the system that implements recursive Bayesian estima-
tion is termed the Kalman filter (Kalman, 1960). The estimate
from the Kalman filter is more accurate than the estimate that
could be obtained by any single measurement alone. The
Kalman filter uses a model of the expected change in the state
based on the previous state plus an update based on the
commands and the laws of physics. For example it has been
shown that the brain combines sensory information with the ex-
pected physics of the world in motor prediction (McIntyre et al.,
2001).

State estimation has been suggested to occur within the
cerebellum (Paulin, 1993). To test this, TMS was applied over
the cerebellum just before subjects were asked to interrupt
a slow movement to intercept a visual target (Miall et al., 2007).
The results suggested that when the cerebellum was interrupted
by TMS, the intercept movement was disturbed, causing errors
in the final movement. Analysis of these results suggested that
during these TMS trials, the reaching movements were planned
using hand position that was 140 ms out of date. This supports
the idea that the cerebellum is used to predict the current and
future state, without which the brain must rely on delayed feed-
back, resulting in incorrect movements. Consistent with such
findings, the analysis of Purkinje cell firing in the cerebellum
during arm movements found that cell firing best predicted
movement kinematics, but not muscle activity 100–200 ms in
the future (Ebner and Pasalar, 2008). Although motor-related
activity in the brain must precede motor-related activity in the
periphery, this paper demonstrated that the firing pattern was
more consistent with a forward model (or state estimator) than
an internal model that would correlate with muscle activity. Other

lines of research have suggested that the posterior parietal
cortex is involved in state estimation (Desmurget et al., 2001;
Wolpert et al., 1998a) through receiving predicted information
(see the section ‘‘Forward Models and Predictive Control’’) via
the cerebellum (Shadmehr and Krakauer, 2008).
Bayesian decision theory is made up of both Bayesian statis-

tics and decision theory. The three topics we have covered so far
relate to Bayesian statistics in which inferences are made based
on uncertain or noisy information. Once Bayesian inference
provides an accurate state estimate, decision theory can be
used to determine the optimal actions given the task objectives.
In decision theory the objectives are formulated as a loss
function that describes the desirability (or lack of desirability) of
possible outcomes. The optimal action is, in general, the one
for which the expected loss is minimized, and the selection of
such an optimal action leads to the frameworks of optimal feed-
back control (OFC) and optimal impedance.

Optimal Feedback Control
Extensive research has been performed over the years to inves-
tigate why humans choose one particular manner of performing
a task out of the infinite number possible. Initially, this has
focused on reaching trajectories that tend to exhibit roughly
straight-line paths with bell-shaped speed profiles, although
certain movements have some path curvature depending on
gravitational constraints (Atkeson and Hollerbach, 1985) or
visual feedback (Wolpert et al., 1994). The majority of planning
models have been placed within the framework of optimizing
a cost. The idea is that a scalar value, termed cost, is associated
with each way of achieving a task, allowing all possible solutions
to be ranked and the one with the lowest cost selected. Different
costs then make different predictions about the movement
trajectory. For example, models that have been able to account
for behavioral data include minimizing the rate of change of
acceleration of the hand—the so-called minimum jerk model
(Flash and Hogan, 1985)—or minimizing the rates of change of
torques at the joints—the minimum torque change model (Uno
et al., 1989). In these models, the end result is a desired move-
ment. Although noise and environmental disturbances can act
to disturb this process, the role of feedback is simply to return
the movement back to this desired trajectory. Although able to
account for many features of the empirical trajectories, these
models have several features that make them somewhat unat-
tractive in terms of explanatory power. First, it is not clear why
the sensorimotor systems should care about costs such as the
jerkiness of the hand. Second, even if it did, to optimize this
would require measurement of third derivatives of positional
information, and for this to be summed over the movement is
not a trivial computation. Third, these models often do not
provide information as to what should happen in a redundant
system because they only specify endpoint trajectories. Finally,
it is hard to generalize these models to arbitrary tasks such as
a tennis serve.
In an effort to reexamine trajectory control and counter these

four problems, amodel was developed based on the assumption
that there was one key element limiting motor performance, i.e.,
noise. In particular, motor noise over a reasonable range of
motor activity is signal dependent, with the standard deviation
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of the noise scaling with the mean level of the signal—a constant
coefficient of variation. Therefore, for faster, more forceful move-
ments, the noise is greater than for slow movements, naturally
leading to the speed-accuracy trade-off. However, the idea
that this type of noise may be responsible for many of the char-
acteristics of human movement was formalized by the connec-
tion between motor planning and signal-dependent noise (Harris
and Wolpert, 1998). Within this framework, the goal of the motor
system is to optimize some statistic of the movement such as
minimizing the endpoint variance. An optimal movement is one
that minimizes the deleterious effects of noise while subject to
boundary constraints such as reaching a target (on average) in
a specified time. This optimization was able to predict movement
trajectories for both the eye and arm (Harris and Wolpert, 1998;
Haruno and Wolpert, 2005). The benefit of this model is that the
cost, i.e., accuracy, is a natural variable the sensorimotor system
should care about. The cost is easy to measure because it is just
how far away the hand or eye ends up from a target. The model
can deal with redundancy because the noise is at the muscular
level, so effects on task performance take into account the
kinematics of the body (Haruno and Wolpert, 2005). Finally,
any task can be placed within the framework of optimizing the
statistics of movement. For example the optimal tennis serve
can be specified as the movement that has the highest proba-
bility of winning the point or has the highest speed at a particular
average location with a variance that means it has a 90% chance
of being within the service area. However, the solutions obtained
for this model were feedforward, and the incorporation of feed-
back required a major extension to the model.
OFC was developed as a model that combined ideas on opti-

mization with feedback control tuned to task demands (Todorov
and Jordan, 2002). OFC finds the best possible feedback control
law for a given task that minimizes a mixed cost function with
components that specify both accuracy and energetic costs.
Subject to the dynamics of the task and the noise in the
sensory and motor system, OFC finds a particular feedback
control law, in other words, how particular feedback gains
change throughout the movement, such that the minimal ex-
pected cost is achieved. In contrast to inverse models that
map desired state and current state into a motor command,
OFC does not need to specify a desired state at each point in
time. Instead, given a cost function that specifies a penalty on,
for example, the state at some fixed time and the integrated
effort, it uses the current state as an input to generate the motor
command. Therefore, an important feature of these feedback
control laws is that they will only correct for deviations that are
task relevant and will allow variation in task-irrelevant devia-
tions—the so-called minimum intervention principles. This
matches studies that show that feedback does not always act
to return the system back to the unperturbed trajectory but often
acts in a manner to reduce the effect of the disturbance on the
achievement of the task goal (Kurtzer et al., 2009).
OFC is important as a framework because it combines trajec-

tory generation, noise, and motor cost within a single framework
and provides a clear comparison for the results of experimental
work. The control law and, hence, predicted trajectory depend
on the relative weighting of each of the costs (e.g., energy costs,
error costs). We have yet to understand how a task determines

the relative weighting, and therefore, this is a free parameter
often fit to the data. The evidence that the sensorimotor system
uses OFC can be broken down into two main categories. The
first is the feedforward changes in trajectories and coordination
patterns predicted by OFC, whereas the second is changing
parameters in feedback control. We review each of these in turn.
Coordination and Redundancy
The theory of task optimization in the presence of signal-depen-
dent noise (Harris and Wolpert, 1998) suggests that one move-
ment is chosen from the redundant set of possible movements
so as to minimize the variance in the endpoint location, thereby
maximizing accuracy. This theory suggests that smoothness
and roughly straight-line movements are simply by-products of
the desire for accuracy in the presence of signal-dependent
noise. As such it provides a principled way in which many of
the redundancies—particularly the trajectory and joint angles—
could be solved. This was further expanded by the optimal
control framework (Todorov, 2004; Todorov and Jordan, 2002).
Optimal control has so far been very successful in predicting
the trajectories that subjects use in a number of tasks, including
eye movements (Chen-Harris et al., 2008; Harris and Wolpert,
2006), arm movements (Braun et al., 2009), adaptation to novel
dynamics (Izawa et al., 2008; Nagengast et al., 2009)), and
posture (Kuo, 2005).
The framework can also be applied to solve the problem of

redundancy within the muscle system (Haruno and Wolpert,
2005). In particular, when multiple muscles are able to perform
similar actions, the sensorimotor control system can choose
how to partition the motor commands across the muscle space.
A second aspect in which OFC has been successfully applied to
solve the issue of redundancy is within multiple degrees of
freedom (Guigon et al., 2007; Todorov and Jordan, 2002). As out-
lined previously, the motor system has over 200 degrees of
freedom fromwhich it chooses several to perform actions.Within
optimal control, one can have cost functions, which are mini-
mized, and constraint functions, which need to be achieved.
By including the start and end locations as fixed constraints,
OFC can be used to determine how to use multiple degrees of
freedom to perform actions similar to those in a variety of exper-
imental studies without parameter tuning (Guigon et al., 2007).
Task-Dependent Modulation of Feedback
The aim of OFC is not to eliminate all variability, but to allow it to
accumulate in dimensions that do not interfere with the task (To-
dorov and Jordan, 2002) while minimizing it in the dimensions
relevant for the task completion (minimum intervention principle).
This means that OFC predicts that the feedback gains will both
depend on the task and vary throughout the movement. In
particular the theory predicts that perturbations that do not
interfere with the task completion will be ignored, whereas
perturbations that interfere with the task will be appropriately
counteracted (Scott, 2004; Todorov, 2004). There are several
results that support this finding. When subjects make reaching
movements with their two arms and have the endpoint of one
arm perturbed to either side of the movement, the reflex
response in the perturbed arm only will act to return the hand
back to the trajectory. However, when the two arms are acting
together in a reaching movement, controlling a single cursor
that is displayed at the spatial average of the two hands,
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a physical perturbation of a single limb elicits feedback re-
sponses in both limbs to adjust the cursor’s position (Diedrich-
sen, 2007). This demonstrates the flexibility of OFC. Because
noise is signal dependent, the optimal response is to divide the
required change in the control signal between the actuators.
Another example involved manipulating the visual environment
in which subjects reached. During reaching movements a
sensory discrepancy produced by a difference between the
visual location and the proprioceptive location of the hand could
be either task relevant or irrelevant. By probing the visuomotor
reflex gain using perturbations, it was shown that the reflex
gain was increased in task-relevant but not for task-irrelevant
environments (Franklin and Wolpert, 2008). Similarly it has
been shown that target shape modulates the size of the visuo-
motor reflex response (Knill et al., 2011).

Liu and Todorov (2007) investigated another predicted feature
of optimal control. The theory itself predicts that feedback
should be modulated differently during a movement depending
on the distance to the target. At the beginning of the movement,
the feedback is less important because there is sufficient
time to correct for errors that might arise in the movement.
However, near the end of the movement, errors are likely to
cause the target to be missed. This was investigated by having
subjects make reaching movements to a target, and jumping
the target lateral to the direction of movement at different times
(Figure 1A). As predicted, the subjects responded more strongly
when the target jump occurred close to the end of themovement
(e.g., blue paths), producing both a change in the movement
speed and lateral movement to the target (Figures 1B and 1C).
Interestingly, in this case, subjects also failed to completely
compensate for the target displacement. For target jumps
occurring near the start of movement, no change occurred in
the movement speed, and the movement trajectories slowly
converged to the shifted target location over the rest of the
movement. These results were explained by an OFC model of
the task that was able to reproduce the characteristics of the
human movements (Figures 1D–1G). The optimal control model
has three time-varying feedback gains that act throughout the
movement (Figure 1E). In order to have the movements stop
near the target, the feedback gain acting to minimize movement
velocity (kv) is much larger than the one acting to enforce target
accuracy (kp), similar to over-damping the system at the end of
the movement. This explains the failure of the subjects to
completely compensate for the target shift when it occurred
late in the movement because the velocity feedback gain pre-
vented complete adaptation of the endpoint position.
Finally, if the brain utilizes some kind of OFC, then the reflex

responses should exhibit the same kind of responses as
seen in voluntary control because the same neural structures
must be responsible for both (Scott, 2004). This means that
not only will the responses vary according to the physical
demands of the task being performed but that these responses
approximate the later ‘‘voluntary’’ responses (Pruszynski et al.,
2009). Although the short-latency (monosynaptic) stretch reflex
responds only to muscle stretch, the long-latency response
has long been known to respond to other factors (e.g., Lacquaniti
and Soechting, 1986). However, more recently, it has been
shown that the long-latency stretch reflex responses actually
reflect the internal model of the limb, corresponding to the
required joint torques to offset the overall disturbance of the
limb (Kurtzer et al., 2009; Kurtzer et al., 2008).

Forward Models and Predictive Control
Both time delays and noise in the sensorimotor system impede
our ability to make accurate estimates of relevant features of
movement, such as the state of our limbs. Motor prediction, as
instantiated by a forward model, is a key computational compo-
nent that can alleviate this problem (Desmurget and Grafton,
2000; Miall et al., 1993; Wolpert and Kawato, 1998). We have
touched upon this issue previously in our description of the
Kalman filter, in which a combination of motor output and
sensory input is used to estimate the current state. A forward
model is a putative computational element within the nervous
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Figure 1. OFC Predicts Adaptive Feedback Responses
(A) Paths of reaching movement in the horizontal plane viewed from above.
Althoughmoving toward a target (central black circle), the target location could
jump laterally (top or bottom targets) at three different times after movement
start. These produce different feedback responses depending on the timing of
the target shift.
(B) Speed profiles for the movements shown in (A).
(C) Lateral deviation (toward the displaced target and perpendicular to
main movement direction). Subjects make different corrective movements
depending on the time of the target shift.
(D) An OFC model predicts similar trajectories to human subjects.
(E) The complex time varying feedback gains of the optimal feedback
controller that give rise to the predicted movements. kp, accuracy of final
position; kv, limiting movement velocity; ka, limiting activation; max, maximum.
(F and G) Speed and lateral deviation predicted by the optimal control model.
Similar to human subjects, the model predicts that when time allows, minimal
corrective movements are made to reach the shifted target (low gains in E). On
the other hand, when the target jump occurs late in the movement, both
the speed and lateral movement are changed, and some undershoot of the
movement trajectory is produced (adapted with permission from Liu and
Todorov [2007]).
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system that predicts the causal relation between actions and
their consequences (Wolpert and Kawato, 1998). The forward
model instantiates a model of the neuromuscular system and
external world, thereby acting as a neural simulator that makes
predictions of the effect of motor commands. A necessary input
to the forward model is a copy of the motor output (termed effer-
ence copy) that will act on the neuromuscular system. The output
of the model can then be used for state estimation, prediction of
sensory feedback, or for predictive control.
Forward models are not only useful to counteract the effects

of delays and noise but also can help in situationswhere identical
stimuli can give rise to different afferent signals depending on
the state of the system. For example by modulating the g static
and g dynamic drive to the muscle spindles, the sensorimotor
system will receive different sensory responses for the identical
physical input (Matthews, 1972). To infer state in such situations,
the sensorimotor system needs to take into account the motor
output to interpret the sensory input. Therefore, only by com-
bining multiple signals (e.g., g dynamic drive, g static drive,
a motor neuron drive) within a forward model of the system
can inferences be made to interpret the state of the system
from ambiguous afferent signals.
Evidence for Forward Models and Predictive Control
There have been many studies that have investigated whether
forward models can be found within the sensorimotor system.
However, conclusive evidence for a forward model in the
sensorimotor system has been very difficult to produce. This is
because the output of the forward model, a prediction of a future
event, is not a measurable output but, instead, used to guide the
control of the motor system (Mehta and Schaal, 2002). Several
studies supporting the use of forward models in the sensori-
motor system have used different techniques, for example sinu-
soidal tracking with induced delays (Miall et al., 1993) or virtual
pole balancing with feedback blanking (Mehta and Schaal,
2002). In one study the existence of a forwardmodel was probed
by asking subjects to report the final hand position at the end of
reaching movements that had been physically perturbed without
visual feedback (Wolpert et al., 1995). The systematic errors and
the variability in the errors in the estimated positions were indic-
ative of a forward model similar to the Kalman filter. Using
saccades during reaching movements to probe the underlying
predicted hand position, several studies have provided evidence
that estimates of body state use both sensory feedback and a
model of the world (Ariff et al., 2002; Nanayakkara and Shad-
mehr, 2003). They asked subjects to visually track the position
of their hand during full-limb reaching movements. They found
that saccades tended to move to a position 196 ms in advance
of the position of the hand (Ariff et al., 2002). By disturbing the
arm position with unexpected perturbations, they demonstrated
that saccades were initially suppressed (100 ms following the
disturbance), then following a recalculation of predicted position,
the eyes moved to a predicted position (150ms in advance, sug-
gesting access to efferent copy information). In contrast when
the perturbation also changed the external dynamics (i.e., add-
ing a resistive or assistive field), this recalculation was incorrect,
and subjects were unable to accurately predict future hand
position. This work suggests that the prediction of future hand
position was updated using both the sensory feedback of the

perturbation and a model of the environment. When the model
of the environment was incorrect, the system was unable to
accurately predict hand position. On the other hand, when the
altered environment could be learned, the saccade accurately
shifted to the actual hand position, demonstrating that themodel
of the environment could be adaptively reconfigured (Nanayak-
kara and Shadmehr, 2003).
Prediction for Perception
Prediction can also be used for perception. In particular, sensory
prediction could be performed by predicting the state of the
body and using this sensory prediction to cancel out the sensory
consequences of moving (reafference) (von Holst and Mittel-
staedt, 1950). This cancellation of self-generated sensory
feedback would be used to increase the detection of any envi-
ronmentally generated sensory information (Wolpert and Flana-
gan, 2001). One of the ways that this theory was tested was by
using the observation that self-generated tickle was much less
ticklish than externally generated tickle. By using robotic manip-
ulanda to separate the self-generated motion to perform the
tickle and the tactile input on the skin (giving rise to the tickle
sensation), it was demonstrated that as the sensation was
changed from the self-generated motion by adding small delays
or changes in movement direction, the tactile input became
more ticklish (Blakemore et al., 1999). This demonstrates that
the prediction mechanism used in sensory perception was
precise, both spatially and temporally. A similar effect was found
in force generation, where self-generated forces are felt less
intensively. This was used to explain the finding of force escala-
tion (Shergill et al., 2003). Support for this idea that the efference
copy is used to predict the sensory consequences of movement
and remove this for sensory perception has also been found in
self-generated head movements where the predicted cancella-
tion signal is subtracted in the vestibular nuclei (Roy and Cullen,
2001, 2004).
Research on eye movements has also provided strong

evidence for the use of efference copy in amanner that illustrates
many of the properties of the forward model, in particular for this
transformation from motor to sensory representation (Roy and
Cullen, 2001, 2004; Sommer andWurtz, 2002, 2006). In the visual
system, the change in afferent feedback produced by the move-
ment of the eye needs to be determined in order to discount
accurately the self-generated movement (reafference) from the
externally generated movement in the world (exafference). This
could be done using the motor signals sent to the muscle of
the eye. Saccades are generated from the frontal eye field
(FEF) via descending drive through the superior colliculus (SC)
(for a review see Andersen and Buneo, 2002); therefore, it was
hypothesized that signals from the SC could act as efference
copy back to the FEF (Sommer andWurtz, 2002). One candidate
pathway, therefore, was via themedial dorsal nucleus (MD) of the
thalamus, which increases activity just prior to the saccade and
signals the direction of the saccade (Sommer and Wurtz, 2004a)
(Figure 2A). In the double-step saccade task (Figure 2B), two
targets are flashed sequentially during fixation, to which the
eye is then required to make a saccade to in sequence. The
location of the second target is only available as a vector from
the initial fixation position. This means that once the first move-
ment is made, information about the first movement must be
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combined with the second target location to provide an updated
target estimate relative to the current eye fixation position.
Normally, the first saccade will produce a range of endpoints
due to noise. However, the second saccade was found to
change angle to compensate for the distance of the first
saccade, suggesting that information about the actual distance
moved in the first saccade was combined with the second target
estimate (Figure 2C). The MD relay neurons were then inacti-
vated by injecting the GABA agonist muscimol. When this
region was inactivated, the second saccade exhibited significant
directional errors corresponding to the direction that the eye
would move in, as if it did not take into account the state change
produced by the first saccade (Figure 2D) (Sommer and
Wurtz, 2002). However, by examining the trial-by-trial variability,
Sommer and Wurtz (2004b) also demonstrated that the second
saccade no longer corrected for the trial-by-trial variability of
the first saccade. Therefore, this work shows that the MD was
transmitting motor signals from the first saccade to update the
sensory representation to guide the second saccades. Second,
Sommer andWurtz (2006) looked at neurons in the FEF that shift
their receptive field prior to the saccade (indicative of efference
copy) (Duhamel et al., 1992) (Figure 2E). Normally, when the
eye is fixated, these neurons respond only to light shone within
their receptive field (Figure 2F, left column). However, just prior
to a saccade to a new location, these neurons will respond
both to a light in the current receptive field and in the future
receptive field (Figure 2F, right column). However, after inactiva-
tion of the MD, whereas the receptive field sensitivity is unaf-
fected (Figure 2F, top), significant deficits were found to probes
in the future receptive field (Figure 2F, blue region). Thus, these
FEF neurons do not shift their receptive fields when the MD is
inactivated (Sommer and Wurtz, 2006). This demonstrates that
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Figure 2. Forward Models in the Sensorimotor System: Evidence
from the Saccadic System
(A) The neural pathway investigated between the visual brain areas and the
motor system responsible for saccades. A major visual to motor pathway (blue
arrows) takes information from the ventral and dorsal streams, via lateral
intraparietal area (LIP) to the FEF. The FEF conveys information to the SC,
which triggers saccades via nuclei within the brain stem. The saccadic system
also has a motor to visual pathway (red arrows), which was proposed to carry
corollary discharge (CD) of themotor actions from the SC to the FEF via theMD
of the thalamus. In a series of experiments, Sommer and Wurtz (2002, 2004b,
2006) inactivated the MD relay neurons by injecting muscimol to test if this
pathway provided motor information about impending eye saccades to higher
visual areas (FEF) similar to forward models.

(B) The double-step saccade task. Although the eye is fixating the starting
location (gray circle), two targets (orange circles) are flashed briefly that need
to be fixated in turn. No visual feedback is present during either of the two
saccades. The location of the second target is only available as a vector from
the original staring location. Once the eye has made a saccade to the first
target, information from the motor system about the movement that occurred
is used to update the location of the second target relative to current eye
fixation position. If this corollary discharge information is lost, then the position
of the second saccade would not be updated, and the second saccade would
miss the target (dotted arrow).
(C) When the SC-MD-FEF pathway is intact, saccades to the first target exhibit
a spread of endpoints (gray ellipse) due to noise; however, the second
saccades are angled appropriately to compensate for the variation in starting
postures.
(D)When theMD replay neurons have been inactivated, the second saccade is
not directed at the appropriate angle to the second target. Moreover, the trial-
by-trial variations in the endpoint of the first saccade were not compensated
for accurately in the second saccade (Sommer and Wurtz, 2002, 2004b).
(E) Shifts of the FEF receptive field occur prior to saccade. When fixating (blue
cross), an FEF neuron has a receptive field within a particular location (green
circle); however, just before a saccade, the receptive field of the neuron shifts
to its future location (purple circle). After the saccade, this new location is the
receptive field.
(F) With an intact SC-MD-FEF pathway (red), probes in the receptive field
location elicit neural firing prior to the saccade to the new location (upper
plots). Moreover, probes in the future receptive field also elicit neural firing
directly prior to the saccade (lower plots), indicating that the receptive field
shifts prior to the saccade. When the MD is inactivated (blue), the neural firing
in the receptive field is unaffected, but significant deficits (light-blue region)
were found to probes in the future receptive field (F adapted by permission
from Macmillan Publishers Ltd: Nature, Sommer and Wurtz [2006]).
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this pathway is used to convey predictive eye position to the FEF
to allow shifts in the receptive fields in advance of saccade
onset. Therefore, in the visual system, efference copy (corollary
discharge) is used to change the sensory feedback and thereby
the perception. In this case the signals are likely used to maintain
the perceptual stability of the visual image. Similar results have
been found in other perceptual systems such as the vestibulo-
ocular system in primates, which takes into account self-gener-
ated movements (Roy and Cullen, 2001, 2004).
Forward Models in the Nervous System
Given the evidence that the motor system uses prediction for
control, and the support for forwardmodeling in state estimation,
the question is where such modeling is actually performed
for effectors other than the eye. Forward modeling has been
proposed to occur within the cerebellum (Bastian, 2006; Miall
et al., 1993; Paulin, 1993; Wolpert et al., 1998b) and has been
supported by several lines of evidence. The first is indirect
evidence in brain imaging (Blakemore et al., 2001; Boecker
et al., 2005; Desmurget et al., 2001; Kawato et al., 2003);
however, this is supported by more direct evidence related
to deficits associated with cerebellar damage (Müller and
Dichgans, 1994; Nowak et al., 2004, 2007; Serrien and Wiesen-
danger, 1999). For example when we drop a weight from one of
our hands onto an object held by the other hand, our grip force
on the object increases predictively just before impact of the
object (Johansson and Westling, 1988). If on the other hand,
someone else dropped the weight, then, without visual feed-
back, we would have no predictive control, and the increase in
grip force would occur reflexively at delays of around 100 ms.
In patients with cerebellar degeneration, all of the responses to
a dropped object, whether made by the experimenter or by the
patient themselves, exhibited this delayed increase in grip force
suggesting that the patients with cerebellar damage were unable
to make a predictive coupling of grip force (Nowak et al., 2004).
Another predictive mechanism in sensorimotor control is the
reduction in force when we lift a heavy object off of one hand
by using the other. If we lift off the object ourselves, then we
reduce the required force in a predictive manner such that our
hand does not move. However, if someone else performs this
action, then we are unable to predict the reduction in force accu-
rately enough, causing an elevation of our hands upward as the
load is reduced faster than our prediction. When this mechanism
was examined in patients with cerebellar damage, it was found
that whereas the patients maintained some ability to predict
the unloading, deficits were still found in the timing and scaling
as well as the inability to remap this predictive control to new
stimuli such as unloading via a button press (Diedrichsen et al.,
2005). In addition to cerebellar evidence for forward models
(Ebner and Pasalar, 2008; Miall et al., 2007; Tseng et al., 2007),
there appears to be evidence that prediction can be seen at
many levels, from posterior parietal cortex (Desmurget et al.,
2001; Shadmehr and Krakauer, 2008; Wolpert et al., 1998a) to
the muscle spindles, where the afferents contain information
related to movements 150 ms in the future (Dimitriou and Edin,
2010). It has been suggested that the type of predictive informa-
tion transmitted as efferent copy may vary depending on the
level within the stream of processing (Sommer andWurtz, 2008).
For example at lower levels within the motor system, efference

copy may signal muscle activity commands, whereas at higher
levels, such signals may signal spatial planning. Thismay explain
why evidence of such forward model signals can be found at
various levels in both the central and peripheral nervous system.

Impedance Control
The computational mechanisms we have so far described, such
as forward models and OFC, are primarily applicable to situa-
tions that are predictable; however, many motor tasks have
unpredictable components that arise through two possible
mechanisms. First, unpredictability can arise from an inability
to model fully the system, such as when holding the lead of
a dog that can pull on the lead in random directions. Second, it
can arise in a system that may be easy to model but that is
unstable, such as when using a handheld knife to cut an apple,
but in which noise can lead to an unpredictable outcome, such
as a rightward or leftward slip off the apex (Rancourt and Hogan,
2001). In such unpredictable tasks the sensorimotor system
relies on responses at a variety of delays to minimize any errors
that arise. At one extreme are the instantaneous responses to
any physical disturbance produced by the mechanical proper-
ties of the body and muscles—in particular the inertia of the
body segments, and the intrinsic properties of the muscles (stiff-
ness and damping). Later responses (at various delays) to the
perturbations can be produced by reflex responses. As the delay
increases, these responses can be tuned according to the task
(Pruszynski et al., 2008). However, such adaptive responses, de-
layed by 70 ms, may be too late to prevent a task failure, espe-
cially in an unstable environment (Burdet et al., 2001). In such
cases the neural feedback pathwaysmay be insufficient tomain-
tain stability (Mehta and Schaal, 2002). Therefore, in these situa-
tions the CNS controls themechanical properties of themuscles,
regulating the impedance of the system to ensure stable smooth
control.
Control of Impedance
Mechanical impedance is defined as the resistance to adisplace-
ment. In a standard lumped model of impedance, three main
components are present: stiffness, the resistance to a change
in position; damping, the resistance to a change in velocity;
and inertia, the resistance to a change in acceleration. Although
the inertia can be controlled only by changing posture (Hogan,
1985), the viscoelastic properties (stiffness and damping) can
be controlled by changing muscle activation or endpoint force
(Franklin and Milner, 2003; Gomi and Osu, 1998; Weiss et al.,
1988), coactivating muscles (Carter et al., 1993; Gomi and
Osu, 1998), changing limb posture (Mussa-Ivaldi et al., 1985),
and modulating reflex gains (Nichols and Houk, 1976). It has
been suggested that the sensorimotor system could control
the impedance of the neuromuscular system to simplify control
(Hogan, 1984, 1985). Such a strategy has been observed, in
which subjects increase their limb stiffness when making reach-
ing movements in unpredictable (Takahashi et al., 2001) or
unstable environments (Burdet et al., 2001). In sensorimotor
control, increases in stiffness are not the only manner in which
impedance control is used. For example when trying to avoid
obstacles, subjects will choose a low-impedance (admittance)
strategy so that interactions will lead to the hand deviating so
as to move around the obstacle (Chib et al., 2006).
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To examine adaptation to instability, subjects reached in
a force environment in which instability was only present orthog-
onal to the direction of movement (Burdet et al., 2001). They
found that stiffness increased only in the direction of the insta-
bility, but not in the direction of movement. This suggests that
the sensorimotor control system can coordinate the coactivation
of muscles to tune the orientation of the stiffness of the limb to
match task demands (Burdet et al., 2001), thereby reducing
the energetic cost relative to scaling up the entire stiffness
of the limb (Franklin et al., 2004). Indeed, this was shown to be
the case. When subjects adapted to a series of unstable environ-
ments, each with different directions of instability, subjects
adapted the endpoint stiffness so that it was roughly aligned to
each direction of instability (Franklin et al., 2007b). Moreover,
an examination of the muscle activity associated with each
unstable environment showed that this tuning of the endpoint
stiffness was achieved partially through selective coactivation
of different muscles, each contributing to increased stiffness in
different directions.
Feedback Control of Impedance
Although muscular coactivation increases impedance thereby
producing an instantaneous response to any disturbance, it
also requires higher energy to maintain. Thus, there is a trade-
off between the stability and metabolic cost. However, feedback
components that do not induce such a metabolic cost can also
increase the stiffness of the muscle to perturbations, albeit
with a small delay (Nichols and Houk, 1976). The reflex gain
also changes when the stability of the task changes (Akazawa
et al., 1983; Perreault et al., 2008). This reflex contribution to
stability has strong support from studies examining unstable
tasks such as posture control when standing (Loram and Lakie,
2002; Morasso and Sanguineti, 2002) or while catching a ball
(Lacquaniti and Maioli, 1987). However, the relevant timescale
for corrections is markedly longer for such posture control
compared to control of object interaction (Morasso, 2011). As
this time decreases, feedback mechanisms for controlling
impedance become less useful and direct coactivation control
more necessary. However, even for control of object interaction,
reflex contributions still matter. Several studies have provided
evidence that the sensorimotor control system can and does
regulate feedback gains for impedance control (Franklin et al.,
2007b; Krutky et al., 2010).
Interactions between Impedance and Noise
Impedance control is another method in which the brain can
counteract the effects of noise. Although the increase in muscle
activation responsible for increased muscle stiffness causes
an increase in signal-dependent motor noise, the stiffness
increases faster than the noise so that overall a reduction in
the disturbance is produced (Selen et al., 2005). This means
that noise at the level of the joint or endpoint of a limb does
not necessarily increase linearly with the size of the control
signals. Asmultiple muscles are recruited across a joint, the stiff-
ness adds because the muscles are in series with one another.
However, the noise produced by each muscle will average out
as long as the noise is not correlated across the muscles. There-
fore, the noise will increase at a smaller rate than the stiffness as
long as the descending drive to all of the active muscles is not
giving rise to highly correlated changes in muscle force. Indeed,

recent studies have found very low correlations between forces
in individual muscles (Kutch et al., 2010).
Because increased impedance reduces the effect of noise,

and decreased noise decreases the endpoint errors (van Beers
et al., 2004), this provides an excellent strategy for increasing
the accuracy of movements. A series of experiments have
investigated this possible relationship between impedance and
accuracy (Gribble et al., 2003; Lametti et al., 2007; Osu et al.,
2004). These studies have shown that the variability in move-
ments, especially inmovement endpoints, occurs primarily when
the stiffness or cocontraction levels are low (Lametti et al., 2007).
Moreover, when accuracy needs to be increased, subjects
increased the cocontraction of muscles (Gribble et al., 2003;
Osu et al., 2004) and the joint stiffness to adapt to the accuracy
demands at the end of the movement.
Within the geometry of a multiple link, multiple muscle limb,

there is a further complication added to this interplay between
noise and stiffness. Due to the geometry of the limb, eachmuscle
will contribute differently to the limb stiffness, endpoint force,
and endpoint noise. Specifically, each muscle contributes to
these properties in a particular direction at the endpoint of
the limb, which varies depending on the posture of the limb.
Therefore, these complex interactions can be exploited by the
sensorimotor control system in order to optimize the trade-offs
between noise, metabolic cost, stability, and task success.
The inclusion of geometry allows the system to manipulate the
control strategy such that any motor noise at the endpoint could
be orientated in a task-irrelevant direction. Indeed, an object
manipulation study demonstrated that the nervous system
modulates the limb stiffness in an optimal manner so that the
stiffnessmay not be increased purely in the direction of the insta-
bility but increases in the direction that balances the increase in
stiffness in the appropriate direction with the increase in motor
noise (Selen et al., 2009).
Optimal Control of Impedance
Although there are mathematical difficulties with incorporating
nonlinear muscular properties within the stochastic OFC frame-
work, some work has already been produced that attempts to
bridge this gap (Mitrovic et al., 2010). In this study, impedance
control is presented as the technique for dealing with uncer-
tainties in the internal model; for example, when novel dynamics
are experienced, before the learning is completed, there is a large
uncertainty about what the dynamics are and how to compen-
sate for them.Within this framework, the coactivation of muscles
to increase the stiffness or impedance of the system results as
an emergent property acting to reduce the uncertainty of the
internal model. This fits within the experimental work because
coactivation is seen as one of the first responses to changing
dynamics whether or not such coactivation is required for the
final adaptation to the dynamics (Franklin et al., 2003; Osu
et al., 2002; Thoroughman and Shadmehr, 1999).
Impedance Control in the Nervous System
Only a limited amount of work has been done so far to investigate
the neural underpinnings of impedance control. It has been sug-
gested that the cerebellum is the brain area most likely involved
in impedance control (Smith, 1981). This has been supported by
changes in cerebellar firing during coactivation (Frysinger et al.,
1984) and several fMRI studies investigating the coactivation
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involved in stabilizing an unstable object compared to amatched
stable object (Milner et al., 2006, 2007). However, in these two
fMRI studies, it is not clear that a forward model could be sepa-
rated from an impedance controller (because both could have
been used for the unstable task, but not for the stable task).
Earlier work also proposed that there are separate cortical areas
for the control of movement/force and joint stiffness (Humphrey
and Reed, 1983), a finding supported by psychophysical studies
(Feldman, 1980; Osu et al., 2003), but not conclusively. In terms
of the adaptive control of feedback gains that change with the
environmental compliance, the results are much clearer. Recent
studies using single-cell recordings in monkeys and TMS in
humans have shown that these task-dependent feedback gains
are dependent on primary motor cortex (Kimura et al., 2006;
Pruszynski et al., 2011; Shemmell et al., 2009).

Learning
Finally, we examine the issue of learning. As already discussed,
one of the features that makes control difficult is nonstationarity.
Both over the long timescale of development and aging as well
as on the short timescales of fatigue and interactions with
objects, the properties of the neuromuscular system change.
Such changes require us to adapt our control strategies—in
other words, learn. In sensorimotor control, two main classes
of learning have been proposed: supervised learning, in which
the (possible vector) error between some target of the action
and the action itself drives learning (Jordan and Rumelhart,
1992; Kawato et al., 1987); and reinforcement learning, in which
a scalar reward signal drives learning (Dayan and Balleine, 2002;
Schultz and Dickinson, 2000). The third main type of learning,
unsupervised learning, has been a focus primarily in the
modeling of sensory processing (Lewicki, 2002; Olshausen and
Field, 1996).
There has been extensive work in sensorimotor control sug-

gesting that an internal model of the external environment is
learned (for a review see Kawato, 1999; Wolpert and Kawato,
1998). This has focused on the adaptation of limb movements
to novel dynamics. When subjects are presented with a change
in the external dynamics during movement, causing a distur-
bance to the trajectory, subjects gradually adapt, producing
straight movements (Lackner and Dizio, 1994; Shadmehr and
Mussa-Ivaldi, 1994). This learned adaptation is not simply
a rote learning of the compensations required for a particular
trajectory but generalizes across the work space for a variety
of movements (Conditt et al., 1997; Goodbody and Wolpert,
1998; Shadmehr and Mussa-Ivaldi, 1994), suggesting that the
sensorimotor control system develops an internal representation
of the external world that it can use to generalize for novel move-
ments. Although the introduction of novel dynamics induces
large errors and, hence, large feedback responses, these are
gradually reduced as the feedforward control is learned (Franklin
et al., 2003; Thoroughman and Shadmehr, 1999). There is
evidence that such fast trial-by-trial learning relies on the cere-
bellum because patients with cerebellar damage are impaired
in such adaptation across many task domains (Diedrichsen
et al., 2005; Smith and Shadmehr, 2005; Tseng et al., 2007).
The way learning evolves both spatially and temporally has

been studied extensively using state spacemodels. For example

during learning the errors experienced for a movement in one
direction show spatial generalization to movements in other
directions with a pattern determined by a decaying generaliza-
tion. This has been suggested to occur through the adaptation
of neural basis functions that are broadly tuned across neigh-
boring movement directions and velocities (Thoroughman and
Shadmehr, 2000; Thoroughman and Taylor, 2005). Specifically,
what this means is that the learning of the dynamics is not local
but is used for control at nearby regions in state space. There-
fore, the learning generated in any one movement is used to
update a neural basis function that is used for control in a variety
of similar movements. This allows the learning function to
generalize control across the reachable state space so that
movements that have never been performed can be appropri-
ately predicted and performed. In the temporal domain, recent
experiments have shown that there are two learning processes
that contribute to the adaptation process: a fast process that
learns quickly and forgets quickly, and a slow process that learns
but also forgets more slowly (Smith et al., 2006). Extensions of
this basic two-rate model suggest that there is a single-fast
process used for all environments but a multitude of slow
processes, each gated by contextual information (Lee and
Schweighofer, 2009). This may explain the conflicting results
that have been found when investigating the consolidation of
motor memories (Brashers-Krug et al., 1996; Caithness et al.,
2004). Recent experiments have only been able to demonstrate
the consolidation of opposing force fields for fairly dramatic
contextual information (Howard et al., 2008; Nozaki et al., 2006).
Learning Signals for Adaptation
Signals that drive motor learning can arise in different modalities,
such as through vision or proprioception, and have differential
importance in driving learning. For example visual feedback of
hand trajectories is not required for adaptation to novel stable
(DiZio and Lackner, 2000; Scheidt et al., 2005; Tong et al.,
2002) or unstable dynamics (Franklin et al., 2007a). This result
may not be unexpected because congenitally blind individuals
are able to walk and use tools (two examples of adaptation to
unstable dynamics), and can adapt to the perturbing effects of
a Coriolis force field (DiZio and Lackner, 2000). This demon-
strates that visual feedback is not critical for adaptation to
dynamics. Interestingly, when subjects were presented with
no visual information regarding the errors perpendicular to the
movement direction, they could straighten their movements
(adapting to the dynamics) but were unable tomodify their move-
ment direction and, therefore, unable to reach the original targets
(Scheidt et al., 2005). This suggests that visual information
appears to be responsible for learning the direction of the move-
ment and path planning. Indeed, subjects without propriocep-
tion are able to adapt to visuomotor rotations (Bernier et al.,
2006), suggesting that the visual signal is enough for the remap-
ping of movement direction planning. However, subjects without
proprioception are unable to learn the correct muscle activation
patterns to adapt to their self-produced joint-interaction torques
during reaching (Ghez et al., 1995; Gordon et al., 1995). Visual
feedback does provide useful information for dynamical control,
in particular to select different internal models of objects (Gordon
et al., 1993). However, whereas visual feedback may predomi-
nately affect the learning and remapping of path planning, it

Neuron 72, November 3, 2011 ª2011 Elsevier Inc. 435

Neuron

Review



appears that proprioceptive feedback predominately drives the
learning and generalization of dynamics.
Optimality and Learning
Models of trial-by-trial adaptation have been developed to relate
errors experienced on one trial to the update of internal repre-
sentation of the forces or joint torques that will be produced on
the subsequent trial (Kawato et al., 1987; Scheidt et al., 2001;
Thoroughman and Shadmehr, 2000). However, this approach
is limited in several respects. First, it has been shown not to func-
tion in unstable environments, where the control of the limb
impedance is required (Burdet et al., 2006; Osu et al., 2003).
Second, within the optimal control framework, motor learning
should not be viewed as a process that only acts to reduce error.
Indeed, other factors such as energy consumption (Emken et al.,
2007), risk (Nagengast et al., 2010), and reward play a role in the
determination of the manner in which adaptation occurs and
may explain why subjects change to curved movements under
certain circumstances (Chib et al., 2006; Uno et al., 1989).
Optimal control can predict the trajectories learned after force
field adaptation (Izawa et al., 2008). Similarly, optimal control
can model the trajectories seen after adaptation to complex
objects (Nagengast et al., 2009). However, these frameworks
for adaptation still do not explain the learning of impedance for
adaptation to unpredictable or unstable dynamics. By consid-
ering a simple optimization process (Figure 3) that trades off
energy consumption and error for every muscle, adaptation to

unstable environments and the resulting selective control of
impedance can be explained (Franklin et al., 2008). Unlike
most other algorithms, this one (Franklin et al., 2008) can predict
the time varying changes in muscle activation and learning
patterns seen during human adaptation to similar environments
(Franklin et al., 2003; Milner and Franklin, 2005; Osu et al., 2003).
The learning algorithm posits that the update of muscle activa-
tion during learning occurs as a function of the time-varying error
sequence from the previous movement similar to feedback error
learning (Kawato et al., 1987). During a movement, the current
joint angle is compared to the desired joint angle to give rise to
a sequence of errors. Each error measure is used by a V-shaped
update rule to determine the change in muscle activation for the
next repetition of the movement (Figure 3B). This change in
muscle activation is shifted forward in time on the subsequent
trial to compensate for the delays. Such a phase advance may
occur through spike timing-dependent plasticity (Chen and
Thompson, 1995). The V-shaped learning rule for each muscle
has a different slope depending on whether the error indicates
that the muscle is too long or too short at each point in time.
Unlike many learning algorithms, a large error produces
increases in both the agonist and antagonist muscles. On the
other hand, a small error induces a small decrease in the muscle
activation on the next trial. The different slopes for stretch or
shortening of each muscle lead to an appropriate change in
the reciprocal muscle activation that drives compensatory
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Figure 3. Error-Based Learning Algorithm Predicts
Changes in Muscle Activation and Coactivation
(A) We consider a single-joint motion for simplicity. In this
example, the elbow joint is controlled by two antagonist
muscles, the biceps (red) and triceps (blue). During
a movement the current joint angle is compared to the
desired joint angle to give rise to a sequence of errors.
(B) Each error measure is used by the V-shaped update
rule to determine the change in muscle activation for the
next repetition of the movement. This change in muscle
activation is shifted forward in time on the subsequent trial
to compensate for the delays. The V-shaped learning rule
for each muscle (biceps, red; triceps, blue) has a different
slope depending on whether the error indicates that the
muscle is too long or too short at each point in time.
(C) The different slopes for stretch or shortening of each
muscle lead to an appropriate change in the reciprocal
muscle activation that drives compensatory changes in
the joint torques and endpoint forces.
(D) Large errors lead to an increase in coactivation,
whereas little or no error leads to a reduction in the
coactivation.
(E) Changes in muscle activation patterns during repeated
trials. In the steady-state condition a movement may be
produced by coordinated feedforward activation of an
agonist-antagonist pair (trial 0). The introduction of a
disturbance that extends the elbow joint (trial 1) produces
a large feedback response in the biceps muscle (dark red).
On the subsequent trial (trial 2), the learning algorithm
changes both the biceps and triceps activation pattern
(shifted forward in time from the feedback response). Due
to this action, a smaller feedback response is produced
on this trial. In the next trial (trial 3), the feedforward
activation is again increased based on the error on the
previous trial such that the disturbance is compensated for
perfectly. This leads to a reduction in the coactivation on
the next trial (trial 4).
(B)–(D) were redrawn with permission from Franklin et al.
(2008).
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changes in the joint torques and endpoint forces (Figure 3C).
However, large errors lead to an increase in coactivation that
directly increases the stiffness of the joint, decreasing the effects
of noise and unpredictability, whereas small errors lead to
a reduction in the coactivation, allowing the learning algorithm
to find minimal muscle activation patterns that can perform the
task (Figure 3D). Therefore, this algorithm trades off stability,
metabolic cost, and accuracy while ensuring task completion.
The learning algorithm works to reshape the feedforward

muscle activation in a trial-by-trial basis during repeated move-
ments. When a movement is disturbed, for example, extending
the elbow and causing a large feedback response in the biceps
(Figure 3E, trial 1), the learning algorithm specifies how this is
incorporated in the subsequent trial. On the subsequent trial
(Figure 3E, trial 2), the learning algorithm changes both the
biceps and triceps activation pattern (shifted forward in time
from the feedback response), producing both a change in joint
torque to oppose the disturbance and an increase in joint stiff-
ness to reduce the effects of the disturbance. Due to this action,
a smaller feedback response is produced on this trial. In the next
trial (Figure 3E, trial 3), the feedforward activation is again
increased based on the error on the previous trial such that the
disturbance is compensated for perfectly. This leads to a reduc-
tion in the coactivation on the next trial (Figure 3E, trial 4).
Through the incorporation of the error-based changes in muscle
activation, the learning algorithm tunes the time varying feedfor-
ward activation to the nonlinear nonstationary changes in the
environment (Franklin et al., 2008). This algorithm can adapt
the muscle activation and limb impedance to optimally coun-
teract changes in noise in the interaction between the human
and the environment. Although the current algorithm still requires
the inclusion of a desired trajectory for the error estimate, the
integration of the model within an optimal control framework
(e.g., Mitrovic et al., 2010) may provide an understanding of
the process by which adaptation occurs. Specifically, this algo-
rithm may explain the mechanism behind the fast adaptation
process of the multirate model (Smith et al., 2006).
Many models have suggested that the sensorimotor system

changes themotor command in proportion to the size of the error
experienced (e.g., feedback error learning) (Franklin et al., 2008;
Kawato et al., 1987). However, experimental studies have shown
conflicting results, with the change in command corresponding
only to the direction of the error with no effect of error size
(Fine and Thoroughman, 2006, 2007). There are several explana-
tions for these results. The first is simply that the adaptation was
a result of the primitives that make up the adaptation process,
which exhibit a combination of position and velocity tuning
(Sing et al., 2009). Therefore, any adaptation after an error will
be a linear scaling of the primitives, resulting in what appears
to be an invariant adaptation to the error. The second explana-
tion is that one must consider sensorimotor adaptation within
the framework of Bayesian decision theory. The ideal strategy
for adaptation was actually found to be nonlinear (Wei and
Körding, 2009), where small errors would be compensated for
in a linear fashion, but large errors would be discounted. This
arises because the sensorimotor control system must weight
the information provided by the uncertainty it has in such a signal.
A single large error is much more unlikely than small errors and

should, therefore, not be compensated for equally. In fact any
sensory feedback experienced during a movement must be
considered within the overall uncertainty of the current model
of the environment, and the uncertainty of the sensory feedback
itself (Wei and Körding, 2010). This will lead to fairly linear
responses to error that fall within the expected variance for
the environmental conditions (e.g., Franklin et al., 2008) and
nonlinear and nonspecific adaptation to single trials that exceed
expectation (e.g., Fine and Thoroughman, 2007; Wei et al.,
2010).
Learning and Credit Assignment
The sensorimotor system is able to learnmultiple internal models
of external objects (Ahmed et al., 2008; Krakauer et al., 1999;
Wolpert and Kawato, 1998), physical parameters of the world
(McIntyre et al., 2001), and internal parameters of the neuromus-
cular system (Takahashi et al., 2006). These models need to be
appropriately adapted when faced with errors. This means that
our motor control system needs to determine how to assign
the sensory feedback used to drive learning to the correctmodel.
Several studies have investigated how adaptation can be
assigned to the internal model of the arm rather than an internal
model of a tool (in this case a robot) (Cothros et al., 2006; Kluzik
et al., 2008). The results suggested that the more gradual the
change in dynamics, the stronger was the association with the
subject’s internal model of the arm rather than of the robot (Kluzik
et al., 2008). Similarly, if errors arise during reaching, we need to
determine whether to assign the error to our limb dynamics or
external world and thereby update the appropriate model. The
problem of credit assignment can be solved within a Bayesian
framework (Berniker and Kording, 2008). In this probabilistic
framework, the sensorimotor system estimates which internal
model is most likely responsible for the errors and adapts that
particular model. A recent study has shown that motor learning
is optimally tuned to motor noise by considering how corrections
are made with respect to both planning and execution noise (van
Beers, 2009). Rather than examining adaptations to perturba-
tions, this study investigated how the sensorimotor control
system adapts on a trial-by-trial manner to endpoint errors.
The system still needs to assign the errors as either due to errors
produced by execution noise that cannot be adapted to, or to
central planning errors, which can be corrected for. The results
suggest that the adaptation process adapts a fraction of the error
onto the command of the previous trial so that the adaptation
process is robust to the execution noise. Together, these recent
studies highlight the issue that sensory feedback cannot simply
be integrated into the feedforward control, but needs to be
accurately assigned to the respective models while taking into
account the manner in which different noise sources will play
into both the planning and execution processes. This demon-
strates that learning, which is used to solve many of the prob-
lems faced by the sensorimotor control system—nonlinearity,
nonstationarity, and delays,—is optimally performed to take
into account the other difficulties, namely noise and uncertainty.

Conclusions
We have presented five computational mechanisms that the
sensorimotor control system uses to solve the difficult problems
involved in motor control. Returning to our original example of
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the hockey goalie, we can see that Bayesian decision theory will
help to deal with the noise in the sensory system, the uncertainty
of the location of the puck, and combining the sensory feedback
with prior information to reduce uncertainty in the system. OFC
can be used to solve the redundancy of the motor system while
minimizing the effects of noise in the motor system—find the
optimal set of muscles to activate to position the glove as accu-
rately as possible to catch the puck. Predictive control or forward
models are able to deal with the delays throughout the sensory,
processing, and motor systems, and deal with the issue that
sensory feedback is always out of date. Impedance control
can be used to deal with feedback delays (ensure that the impact
of the puck does notmove the arm into the net), uncertainty in the
ice surface (controlled stiffness of the interaction between the
skates and the ice), and further limiting the effects of motor noise
in reaching the correct hand location. Finally, learning allows the
sensorimotor control system to correctly tune the neuromuscular
system to the nonstationarity of the physical properties, the
nonlinearity of the muscles, and the delays in the system.

Many of the concepts we have reviewed are currently being
unified with a normative framework (e.g., Berniker and Kording,
2008; Kording et al., 2007a; Mitrovic et al., 2010; Todorov,
2004). Normative models posit that the nervous system is (close
to) optimal when solving for a sensorimotor control problem. To
determine such an optimal solution, the normative model spec-
ifies two key features of the world. First, how different factors,
such as tools or levels of fatigue, influence the motor system:
the so-called generative model. Second, how these factors are
likely to vary both over space and time—that is the prior distribu-
tion. The structure of the generative model and the prior distribu-
tion together determine how the motor system should optimally
respond to sensory inputs and how it should adapt to errors.
Although we presented each computational mechanism sepa-
rately, they interact both in their use and possibly within their
neural implementation. For example both Bayesian decision
theory and forward modeling will be used to make the best esti-
mate of the state of the body that is necessary for OFC.

Although evidence for these five computational mechanisms
being used by the sensorimotor control system comes from
extensive modeling work and behavioral experiments, the
neurophysiological implementation of these mechanisms is
less well understood. Throughout this review we have linked
some of the neurophysiological studies to the computational
mechanisms, and some recent reviews have discussed the
possible neural implementations of some of these computational
mechanisms, e.g., Bastian (2006), Shadmehr and Krakauer
(2008), and Sommer and Wurtz (2008). However, the neural
system evolved along with the complex mechanical structures
of the body; therefore, some of these computational mecha-
nisms may even be encoded at lower levels such as in spinal
circuitry (Bizzi et al., 2008). Although this review focuses primarily
on the algorithmic part of sensorimotor control, we believe that
the important open questions are where and how these compu-
tational algorithms are implemented in the neural structures.
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