
Variability is a prominent feature of behaviour. Variability 
in perception and action is observed even when exter-
nal conditions, such as the sensory input or task goal, 
are kept as constant as possible. Such variability is also 
observed at the neuronal level1–4. What are the sources of 
this variability? Here, a linguistic problem arises, as each 
field has developed its own interpretation of terms such 
as variability, fluctuation and noise. In this Review, we use 
the term variability to refer to changes in some measur-
able quantity, such as spike timing or movement duration. 
Importantly, the term variability does not indicate that a 
particular mechanism has generated the variability, and 
does not suggest whether the variability is beneficial or 
detrimental. Trial-to-trial variability can arise from two dis-
tinct sources. The first source is from the deterministic 
properties of the system. For example, the initial state 
of the neural circuitry will vary at the start of each trial, 
leading to different neuronal and behavioural responses. 
The variability in the response will be exacerbated if the 
system’s dynamics are highly sensitive to the initial con-
ditions. The second source of variability is noise, which 
is defined in the Oxford English Dictionary as ‘random 
or irregular fluctuations or disturbances which are not 
part of a signal [ … ] or which interfere with or obscure 
a signal or more generally any distortions or additions 
which interfere with the transfer of information’. 

Whereas previous reviews have focused on neuronal 
variability in general, we focus here on work directly relat-
ing to noise. Noise permeates every level of the nervous 
system, from the perception of sensory signals to the gen-
eration of motor responses, and poses a fundamental prob-
lem for information processing5,6. In recent years the extent 
to which noise is present and how noise shapes the struc-
ture and function of nervous systems have been studied.  

In this Review, we begin by considering the nature, 
amount and effects of noise in the CNS. As the brain’s 
purpose is to receive and process information and act in 
response to that information (FIG. 1), we then examine how 
noise affects motor behaviour, considering the contribu-
tion of noise to variability at each level of the behavioural 
loop. Finally, we discuss the strategies that the nervous 
system uses to counter, compensate for or account for 
noise in perception, decision making and motor behaviour. 
Given the many levels and systems that are spanned, we  
cannot provide a comprehensive Review, but instead  
we pick out specific examples that reflect in a more general 
manner the constraints and limitations that noise sets in 
the CNS; the benefits of noise are discussed in BOX 1.

Sensory noise
External sensory stimuli are intrinsically noisy because 
they are either thermodynamic or quantum mechanical 
in nature. For example, all forms of chemical sensing 
(including smell and gustation) are affected by thermo-
dynamic noise because molecules arrive at the receptor at  
random rates owing to diffusion and because receptor 
proteins are limited in their ability to accurately count 
the number of signalling molecules7,8. Similarly, vision 
involves the absorption of photons that arrive at the 
photoreceptor at a rate governed by a Poisson process. 
This places a physical limit on contrast sensitivity in 
vision, which is reduced at low light levels — when fewer  
photons arrive at the photoreceptor9.

At the first stage of perception (FIG. 1a), energy in the 
sensory stimulus is converted into a chemical signal 
(through photon absorption or ligand-binding of odour 
molecules) or a mechanical signal (such as the movement 
of hair cells in hearing). The subsequent transduction 
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Noise
Random or unpredictable 
fluctuations and disturbances 
that are not part of a signal.

Spike
An action potential interpreted 
as a unitary pulse signal (that 
is, it either is or is not present), 
the timing of which determines 
its information content. Other 
properties of the action 
potential, such as its shape or 
depolarization levels, are 
ignored.

Trial-to-trial variability
The differences between 
responses that are observed 
when the same experiment is 
repeated in the same specimen 
(for example, in the same 
neuron or in the same subject).
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Abstract | Noise — random disturbances of signals — poses a fundamental problem for 
information processing and affects all aspects of nervous-system function. However, the 
nature, amount and impact of noise in the nervous system have only recently been  
addressed in a quantitative manner. Experimental and computational methods have shown 
that multiple noise sources contribute to cellular and behavioural trial-to-trial variability.  
We review the sources of noise in the nervous system, from the molecular to the behavioural 
level, and show how noise contributes to trial-to-trial variability. We highlight how noise 
affects neuronal networks and the principles the nervous system applies to counter 
detrimental effects of noise, and briefly discuss noise’s potential benefits.
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Poisson process
A random process that 
generates binary (yes or no) 
events for which the probability 
of occurrence in any small time 
interval is low. The rate at 
which events occur completely 
determines the statistics of the 
events. Poisson processes have 
a Fano factor of 1. 

process amplifies the sensory signal and converts it into 
an electrical one, either directly or indirectly through 
second-messenger cascades. Any sensory noise that is 
already present or that is generated during the ampli-
fication process (transducer noise10) will increase trial-
to-trial variability. Therefore, noise levels set perceptual 
thresholds for later stages of information processing, as 
signals that are weaker than the noise cannot be distin-
guished from it after amplification11. This is rigorously 
underpinned by the data-processing inequality theorem12, 
which states that subsequent stages of processing (even if 
they are noise free) cannot extract more information than 
is present at earlier stages. Therefore, to reduce noise, 
organisms often pay a high metabolic and structural 
price at the first stage of processing (the sensory stage). 
For example, a fly’s photoreceptors account for 10% of its 
resting metabolic consumption and its eye’s optics make 
up over 20% of the flight payload13.

Cellular noise
If neurons are driven with identical time-varying 
stimuli over repeated trials, the timing of the resultant 
action potentials (APs) varies across the trials3,14–19. This  

variability is on the order of milliseconds or lower14,15,20–25 
but because cortical neurons can detect the coincident 
arrival of APs on millisecond timescales26,27, this order of 
timing precision might well be physiologically relevant. 
Indeed, the precision of single-neuron AP timing on the 
milli- and sub-millisecond scale has been shown to be 
behaviourally relevant in perception28,29 and movement30.
To what extent this neuronal variability contributes to 
meaningful processing (as opposed to being meaning-
less noise) is the fundamental question of neural cod-
ing4,19,31–33. A key issue is that neuronal activity might 
look random without actually being random.

Neuronal variability (both in and across trials) can 
exhibit statistical characteristics (such as the mean 
and variance) that match those of random processes. 
However, even when neuronal-firing statistics match 
those of a random process, it does not necessarily fol-
low that the firing is generated by random processes. 
In fact, we know from Shannon’s theory of informa-
tion5,12 that when optimal encoding is used to maximize 
information transmission, neural signals will look ran-
dom31. Furthermore, neuronal variability is not equal 
in all neurons. The Fano factor is a simple measure of  

Figure 1 | Overview of the behavioural loop and the stages at which noise is present in the nervous system.  
a | Sources of sensory noise include the transduction of signals. This is exemplified here by a photoreceptor and its signal-
amplification cascade. b | Sources of cellular noise include the ion channels of excitable membranes, synaptic transmission 
and network interactions (see BOX 2). c | Sources of motor noise include motor neurons and muscle. In the behavioural task 
shown (catching a ball), the nervous system has to act in the presence of noise in sensing, information processing and 
movement.
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Fano factor
The ratio of the variance of a 
variable quantity to its mean.

Stochastic process (random 
process)
A process that generates a 
series of random events.

Positive feedback
Feedback that responds to a 
perturbation in the same 
direction as the perturbation, 
thereby amplifying its effect.

Nodes of Ranvier
Regularly spaced gaps in the 
myelin sheath that surrounds a 
myelinated axon. They expose 
the axonal membrane to the 
extracellular fluid and contain 
large numbers of voltage-gated 
ion channels and thus enable 
conduction of the action 
potential.

Patch-clamp technique
An electrophysiological 
method that allows the study 
of the flow of current through a 
very small patch of cell 
membrane, which can contain 
just a single ion channel.

variability that ignores temporal structure and higher-
order statistics. Neural responses without variability 
have Fano factors of zero, whereas Poisson processes 
(which are highly variable) have a Fano factor of one. 
Some cortical neurons are highly variable, with Fano 
factors of one or greater2–4,34, whereas others have  
Fano factors that are closer to zero24,35,36. Similarly, there 
is a range of variability in neurons in the mamma-
lian24,37 and invertebrate18,38 visual pathways. Moreover,  
high- and low-variability neurons are often observed 
in the same region, and a single neuron can respond 
with different amounts of variability depending on the 
stimulus conditions18,38.

Multiple factors contribute to neuronal trial-to-trial 
variability. These include changes in the internal states 
of neurons and networks, and random processes inside 
neurons and neuronal networks39,40. To what extent each 
of these factors contributes to the total observed trial-to-
trial variability remains unclear, especially as network 
(BOX 2) and other effects might reduce variability despite 
the presence of noise. In general, the impact of noise 
on cellular function will inescapably increase neuronal 
variability (but see BOX 1), and thus we can compare the 
amount of variability that is produced by noise with  
the total observed variability to give us an idea of the 
relative contribution of noise to trial-to-trial variability.

What are the sources of noise in neurons? In each 
neuron, noise accumulates owing to randomness in 
the cellular machinery that processes information41 
(FIG. 1b) and can further increase as a result of nonlin-
ear computations and network interactions (BOX 2). At 
the biochemical and biophysical level there are many 
stochastic processes at work in neurons. These include 

protein production and degradation, the opening and 
closing of ion channels, the fusing of synaptic vesicles 
and the diffusion and binding of signalling molecules to 
receptors. It is often implicitly assumed that averaging 
large numbers of such stochastic elements effectively 
eliminates the randomness of individual elements. 
However, this assumption requires reassessment. 
Neurons perform highly nonlinear operations that 
involve high gain amplification and positive feedback. 
Therefore, small biochemical and electrochemical fluc-
tuations (when considering systems at the molecular 
level we use the term fluctuation interchangeably with 
noise) can significantly alter whole-cell responses. 
For example, when the membrane potential is near 
the firing threshold, the generation of an AP becomes 
highly sensitive to noise42,43. Large neuronal structures, 
such as the squid giant axon (which can measure up 
to 1 mm in diameter), have been used extensively to 
investigate neural mechanisms41,44–47. Given the scale of 
these structures, they appear to function deterministi-
cally, because large numbers of signalling molecules are 
involved and random fluctuations are indeed averaged 
out. However, many neurons are tiny: cerebellar paral-
lel fibres have an average diameter of 0.2 Mm; C-fibres, 
which are involved in sensory and pain transmission, 
range between 0.1 and 0.2 Mm in diameter; and the 
unmyelinated pyramidal-cell axon collaterals, which 
form the vast majority of local cortico–cortical con-
nections, have an average diameter of 0.3 Mm. Similarly, 
most (spiny- or bouton-type) CNS synapses have sub-
micrometer dimensions. At these small length scales 
the numbers of molecules involved are small and the 
influence of noise is dramatically increased. Here we 
review the main sources of noise in the nervous system 
at the cellular level and the consequences for neuronal 
function.

Electrical noise and action potentials. The membrane 
potential is used both for local computation and to 
carry APs. Although variability in resting membrane 
potential48,49 (membrane-potential fluctuations) and 
AP threshold50 have been studied for a long time, the 
mechanisms that underlie these fluctuations have only 
recently gained attention. Electrical noise in neurons 
causes membrane-potential fluctuations even in the 
absence of synaptic inputs. The most dominant source 
of such electrical noise is channel noise51–53 (FIG. 1b) 
— electrical currents produced by the random opening 
and closing of voltage- or ligand-gated ion channels. 
Stochastic models have shown that channel noise can 
account for variability in the AP threshold at nodes of 
Ranvier54 and the reliability of AP initiation in membrane 
patches42,55,56. Furthermore, patch-clamp experiments 
in vitro show that channel noise in the dendrites and 
in the soma produces membrane-potential fluctuations 
that are large enough to affect AP timing57–60. Both the 
initiation and the propagation of APs can be affected by 
channel noise. 

At the site of AP initiation — the soma or the 
axon hillock — channel noise can affect the timing of 
APs (despite the comparatively large number of ion 

 Box 1 | Benefits of noise

Noise is not only a problem for neurons: it can also be a solution in information-
processing. Several strategies have been adopted to use noise in this fashion. For 
example, stochastic resonance is a process by which the ability of threshold-like 
systems to detect and transmit weak (periodic) signals can be enhanced by the 
presence of a certain level of noise85,173. At low noise levels, the sensory signal does not 
cause the system to cross the threshold and few signals are detected. For large noise 
levels, the response is dominated by the noise. For intermediate noise intensities, 
however, the noise allows the signal to reach the threshold but does not swamp it. For 
stochastic resonance to be useful, positive detection of a sub-threshold input must be 
more desirable than a failure to detect a supra-threshold input. Since its first discovery 
in cat visual neurons174, stochastic-resonance-type effects have been demonstrated in a 
range of sensory systems. These include crayfish mechanoreceptors175, shark 
multimodal sensory cells176, cricket cercal sensory neurons177 and human muscle 
spindles178. The behavioural impact of stochastic resonance has been directly 
demonstrated and manipulated in passive electrosensing paddlefish179 and in human 
balance control180.

In addition, in spike-generating neurons, sub-threshold signals have no effect on the 
output of the system. Noise can transform such threshold nonlinearities by making sub-
threshold inputs more likely to cross the threshold, and this becomes more likely the 
closer the inputs are to the threshold. Thus, when outputs are averaged over time, this 
noise produces an effectively smoothed nonlinearity55. This facilitates spike initiation 
and can improve neural-network behaviour, as was shown in studies of contrast 
invariance of orientation tuning in the primary visual cortex181. Moreover, neuronal 
networks that have formed in the presence of noise will be more robust and explore 
more states, which will facilitate learning and adaptation to the changing demands of a 
dynamic environment182,183.
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Signal-to-noise ratio
The ratio of how much power is 
contained in the signal over the 
power of the noise, often 
measured as the variance of 
the signal divided by the 
variance of the noise.

Axon hillock
The anatomical part of a 
mammalian neuron that 
connects the cell body to  
the axon. Axon hillocks are the 
postulated primary site of 
action-potential initiation.

channels that are present at these sites)43,54. Stochastic 
simulations have shown that it is not the number of 
ion channels that are open at the peak of the AP that 
determines its timing precision, but the much smaller 
number of ion channels that are open at the AP thresh-
old. The resulting variability in spike timing is larger 
for weaker driving signals, for which the likelihood 
of the membrane potential reaching the AP threshold 
is more affected by channel noise43, 53. The effects of 
channel noise also increase dramatically as neurons 
become smaller61 because the opening of an ion chan-
nel affects the membrane potential in proportion to 
the membrane’s input resistance, which increases rap-
idly with decreasing diameter62. In axons of less than 
0.3 Mm diameter, the input resistance is large enough 
that spontaneous opening of single Na+ channels at 
the resting potential can produce ‘Na+ sparks’ that can 
trigger APs in the absence of any other inputs. These 
‘rogue’ APs become exponentially more frequent 
as axon diameter decreases, rendering axons below 
0.08–0.10 Mm diameter useless for communication. 
This lower limit matches the smallest diameters of 
axons across species. Analogously, noise sets the lower 
limit for the diameter of excitable cell bodies to ~3 Mm. 
Thus, thermodynamic noise in individual ion-channel 
proteins sets an upper limit to the wiring densities of 
the whole brain61.

Channel noise also affects AP propagation in axons, 
producing trial-to-trial variability in AP timing. This 
variability occurs whenever the input resistance of an 
axon is large enough that small numbers of ion channels 
can support AP conduction61. Using biophysical theory 
and stochastic simulations, it was shown that in CNS 
axons of 0.1–0.5 Mm diameter, channel noise introduces 
significant jitter in AP propagation63(FIG. 2a). Thus, the 
variability in postsynaptic responses that results from 
axonal channel noise will increase the longer and thin-
ner the presynaptic axon. Moreover, populations of 
ion channels can retain a memory of axonal activity 
for several hundred milliseconds, owing to a complex 
interaction between the internal states of ion-channel 
populations and the membrane potential. This history 
dependency results in some patterns of spikes (such as 
bursts) being less affected by noise than others63. Such 
‘message-dependent’ noise has been observed in mam-
malian neurons64,65; however, this effect is missed when 
models use stochastic approximations (for example, the 
Langevin or Fokker–Planck approximations) or ignore 
spatial interactions. Despite the evidence for the impor-
tance of variability in AP propagation for trial-to-trial 
variability, this has tended to be overlooked by most 
experimental studies (except those of AP conduction 
failure46), with postsynaptic variability being mainly 
attributed to synapses.

 Box 2 | Noise build-up in networks

How can neural networks maintain stable activity in the 
presence of noise6? There are several ways in which 
networks can affect overall noise levels. The figure 
illustrates this with three simple examples in which 
graded-potential neurons linearly sum inputs. Part a shows 
convergence of signals onto a single neuron. If the 
incoming signals have independent noise, then noise levels 
in the postsynaptic neuron will scale in proportion to the 
square root of the number of signals (N), whereas the signal 
scales in proportion to N. If the noise in the signals is 
perfectly correlated, then the noise in the neuron will also 
scale in proportion to N. Part b shows the passage of 
signals through a series of neurons. In this case, noise levels increase in proportion to the square root of the number of 
successive neurons. By contrast, parallel connections (not shown) do not augment noise through network interactions. 
Part c shows that recurrence in networks results in the build-up of correlated noise.

Other computational operations in each neuron can alter the build-up of network noise. The linear operation of 
amplification leaves the signal-to-noise ratio unchanged. Nonlinear operations, such as multiplication and thresholding, 
affect noise build-up differently. In general, multiplication operations increase the coefficient of variation (CV) of the 
output, whereas thresholding decreases the CV. Several studies have examined how noise acts in neuron-like nonlinear 
systems184,185. The highly parallel and distributed yet compact structure of the CNS might help to limit the amount of noise 
that builds up.

Experimental evidence suggests that average neuronal activity levels are maintained by homeostatic plasticity 
mechanisms that dynamically set synaptic strengths186, ion-channel expression155 or the release of neuromodulators25. This 
in turn suggests that networks of neurons can dynamically adjust to attenuate noise effects. Moreover, these networks 
might be wired so that large variations in the response properties of individual neurons have little effect on network 
behaviour187.

Furthermore, in many spiking neurons188,189, doubling the input results in less then twice the output. This suggests that 
presynaptic noise and intracellular noise are attenuated as the signal passes through the neuron. The fact that the noise 
remains so small suggests that neuronal networks can be organized in a way that prevents local noise accumulating as 
neural signals propagate through them40. Thus, the analogue (membrane-potential based) nature of local neural 
computation (computation within neurons) and the more digital (action-potential based ) nature of global information 
transmission190,191 might be essential ingredients in building noise-robust computational circuits192. Figure modified, with 
permission, from REF. 193 � (2001) Wiley.
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Johnson noise (thermal 
noise, Johnson–Nyquist 
noise or Nyquist noise)
The electronic noise that is 
generated by the thermal 
agitation of the charge carriers 
(electrons and ions) inside an 
electrical conductor at 
equilibrium, which happens 
regardless of any applied 
voltage. Johnson noise is 
distinguished from shot noise, 
which consists of additional 
current fluctuations that occur 
when a voltage is applied to a 
resistance and a macroscopic 
current starts to flow.

Shot noise
A type of noise that occurs 
when the finite number of 
signal particles, such as 
electrons or ions in an 
electrical circuit or photons 
arriving at a photoreceptor, is 
small enough to give rise to 
detectable statistical 
fluctuations in a measurement.

Ephaptic coupling
The coupling of very close or 
touching neurons, mediated by 
the electrical fields the neurons 
generate during electrical 
activity.

Why is AP propagation so sensitive to noise, contrary 
to previous claims41,43,46,66,67? Detailed stochastic model-
ling has shown63 that the leading edge of AP propagation 
is driven by a relatively small — and thus noisy — ionic 
current flowing inside the axon. This causes jitter in the 
speed of the propagation of the AP and thus results in 
variability in AP timing. By contrast, the current follow-
ing the leading edge is large and therefore conduction 
failures owing to channel noise are unlikely, even in very 
thin axons (where <3% of all APs fail). Thus, axonal 
channel noise cannot account for the failure rates that 
have been reported in much larger CNS axons (where 
5–80% of APs fail68), and conduction failures that have 
been observed in the nervous system are more likely to 
be due to computational mechanisms that allow ‘editing’ 
of spike trains69 than to noise63.

Other electrical-noise sources include Johnson noise 
and shot noise owing to membrane resistance, which are 
three orders of magnitude smaller than channel noise in 
CNS neurons70,71. Moreover, variations in the activity of 
nearby neurons could produce ‘cross-talk noise’ in the 

confined spaces of the CNS. Such cross-talk can arise 
through ephaptic coupling68, large changes of extracellular 
ion concentration after electrical signalling72, and spillover  
of neurotransmitters73 between unrelated synapses.

Synaptic noise. If a presynaptic cell is driven repeatedly 
with identical stimuli, there is trial-to-trial variability in  
the postsynaptic response74,75(FIG. 2b). This variability 
could arise from noise41,46 or from a deterministic proc-
ess that is too complex to grasp and thus appears ran-
dom75,76. Here we discuss evidence for the considerable 
contribution of noise to synaptic variability.

Many neocortical cells receive an intense synaptic 
bombardment from thousands of synapses77–79, which 
is often referred to as ‘synaptic background noise’ 
(REFS 80,81). However, the rich set of dendritic mecha-
nisms that allow individual synapses to interact suggests 
that this ‘background’ activity is unlikely to be composed 
only of noise26,27,82,83. Indeed, experimental evidence and 
computational arguments suggest that the synaptic 
background activity contains meaningful structure16,83–85. 

Figure 2 | Examples of cellular noise. a | Channel noise as a source of trial-to-trial variability in action potential (AP) 
propagation. Stochastic simulations of the response of a 0.2 Mm diameter CNS axon (comparable with a cerebellar parallel 
fibre) in response to repeated identical current stimuli and initial conditions are shown. The only source of variability is the 
stochastic opening and closing of a million individually simulated ion channels. Spike trains were triggered by a time-
varying current stimulus (top plot). Spike raster plots for each measurement site are shown, from the soma (second-from-
top plot) down to the most distal part (the axon; bottom plot). In each raster plot, the precise timing of spikes is marked by 
dots, which are stacked over each other for each repeated trial (there were 60 trials). The shift of the overall spike pattern 
across rows reflects the average propagation speed of the APs. The raster plot of the somatic measurement reflects spike-
time variability from AP initiation. Owing to channel noise, the spike-time variability rapidly increases the further the AP 
propagates, and it eventually reaches millisecond orders. b | Trial-to-trial variability of synaptic transmission measured  
in vitro by paired patch-clamp recordings in rat somatosensory cortex slices. Six consecutive postsynaptic responses 
(black traces) to an identical presynaptic-stimulation pattern (top trace) are shown, along with the ensemble mean 
response (grey trace) from over 50 trials. Part a modified from REF. 65. Part b modified, with permission, from REF. 77 � 
(2006) American Physical Society.
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Coefficient of variation
(CV). The ratio of the standard 
deviation of a variable quantity 
to its mean.

Release probability
The probability of a vesicle 
being released during a 
synaptic-transmission event.

Nevertheless, there are microscopic sources of true noise 
present at each synapse that are also likely to contribute 
to this synaptic background variability and influence 
neuronal firing41,46.

The classic manifestation of synaptic noise is the 
spontaneous miniature postsynaptic current (mPSC) 
that can be recorded in the absence of presynaptic 
input. Katz and collaborators interpreted mPSCs as 
being the result of spontaneously released neurotrans-
mitter vesicles, thus establishing the quantal nature of 
synaptic transmission45. This work remains an exquisite 
example of how taking noise into account informs our  
understanding of neural mechanisms.

Several sources of noise at synapses can influence 
information transmission and induce variability (FIG 1b). 
mPSCs are caused by random events in the synaptic-
transmission machinery, such as the spontaneous open-
ing of intracellular Ca2+ stores86,87, synaptic Ca2+-channel 
noise, spontaneous triggering of the vesicle-release 
pathway47 or spontaneous fusion of a vesicle with the 
membrane. Once vesicles are released they induce a 
postsynaptic current, the amplitude of which shows 
considerable trial-to-trial variability (the coefficient of 
variation (CV) being typically >0.2 (REFS 88,89)). To what 
extent can this variability in the postsynaptic response 
be attributed to noise? First, the same stochastic proc-
esses that produce spontaneous mPSCs are also present 
during normal synaptic transmission, and will alter the 
amplitude of the postsynaptic current. Second, the width 
of the presynaptic AP determines the size of the Ca2+ 
signal (the duration of channel opening) that drives 
vesicle release and governs the number of vesicles that 
are released as well as the probability of release. AP width 
variability can result from axonal channel noise, which 
becomes significant for CNS synapses that are innervated  
by neurons with thin axons63.

Several additional factors have been shown to affect 
postsynaptic-response amplitude, each of which relies 
on noisy biochemical mechanisms and involves small 
numbers of molecules and is therefore subject to con-
siderable thermodynamic noise. First, variability in 
the number of neurotransmitter molecules released 
per vesicle (~2000) arises owing to variations in vesicle 
size90 and vesicular neurotransmitter concentration91. 
Second, there is variability owing to the randomness of 
the diffusion of a relatively small number of molecules 
(CV = 0.16 (REF. 92)). Third, the location of vesicle release 
in the synaptic cleft has an impact on the postsynaptic 
response (CV = 0.37 (REF. 92)). Vesicles are distributed 
over the synaptic active zone and, as each AP will trigger 
the release of only some of them, the location varies from 
event to event. Fourth, synaptic-receptor channel noise 
increases the variability, especially if only a small number 
of receptors are involved93. Fifth, the number94 and den-
sity95 of receptor proteins at any synapse might stochasti-
cally vary over time, as the expression and degradation of 
proteins is limited by thermodynamic noise96.

In addition to variability in response amplitude, 
some CNS synapses release either one or no vesicles in 
response to an AP. The vesicle-release probability at small 
and bouton-type central synapses is typically low and is 

controlled by plasticity and adaptation mechanisms89. 
The probability of release itself could constitute a signal 
for information processing97. Therefore, the accuracy 
with which vesicle-release probability can be control-
led might be computationally important; however, this 
accuracy has not been adequately quantified.

Summing up the effect on postsynaptic variability 
from the above synaptic noise sources, we note that the 
total observed synaptic trial-to-trial variability in many 
synapses (CV >0.2) can be fully accounted for by noise. 
However, there might also be biochemical mechanisms 
that reduce noise98. 

Motor noise
We interact with the environment through movements, 
which are inherently variable from trial-to-trial. To gen-
erate movement the signals from the CNS are relayed 
by motor neurons and converted into mechanical forces 
in their muscle fibres (FIG 1c). The force that a single 
motor neuron can command is directly proportional to 
the number of muscle fibres that it innervates. When 
small forces are generated, motor neurons that inner-
vate a small number of muscle fibres are active. When 
larger forces are generated, additional motor neurons 
that innervate a larger number of muscle fibres are also 
active. This is known as Henneman’s size principle99. 
Moreover, as whole-muscle force increases, the firing 
rates of the active motor neurons increase, such that 
those that innervate a small number of muscle fibres 
have the highest firing rate.

The variability in the force that is produced by a 
whole human skeletal muscle is proportional to the 
average force that is produced by that muscle100,101. This 
has been attributed to the physiological organization of 
the pool of motor neurons and their muscle fibres101–104: 
each AP arriving at the muscle fibre induces a ‘twitch’. 
At low firing rates these twitches are separated in time, 
but as firing rates increase the twitches fuse into one 
smooth contraction. Whole-muscle force is determined 
by the number of active motor neurons and the firing 
rates of these neurons. The motor neuron that innervates 
the most fibres will have the lowest firing rate and will 
therefore induce unfused twitches in the muscle fibres 
that it innervates. Thus, any variability in the force that 
is generated by the muscle fibres that are innervated by 
this motor neuron will contribute most to whole-muscle 
force variability.

Three mechanisms contribute to the variability in 
the force that is generated by muscle fibres. First, even 
if a motor neuron fires perfectly periodically, there 
will be ‘ripples’ in the force that is generated by its 
muscle fibres, owing to unfused twitches. This effect 
is further enhanced by the synchronization of motor 
neurons through common mechanosensory feed-
back105. Second, motor neurons are subject to the same 
sources of cellular noise as any other neuron, making 
noise appreciable in AP timing in myelinated motor 
axons of 10 Mm diameter106 and at the neuromuscular 
junction107. The resulting AP timing variability will 
reduce the periodicity of the force and thus increase 
its variability. Both of these factors will contribute to 
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Redundancy
The presence of superfluous  
or duplicate information in a 
message.

overall muscle-force variability108. Third, each twitch 
triggered by a single AP might also show trial-to-trial 
variability in its amplitude and duration, owing to noise 
in the biochemical cascade that generates the twitch 
force. However, to our knowledge this has not been 
quantified. In addition, as in thin axons, Ca2+-channel  
noise in muscle fibres109 or stochastic processes in 
energy release and transport could also produce ran-
dom twitches. Furthermore, noise might result from 
unrelated electrical cross-talk between motor neu-
rons110,111 or muscle fibres112, which could recruit other 
muscle fibres by ephaptic coupling.

Our present knowledge of force variability is based on 
isometric contractions (in which muscle length does not 
change), and it is unclear how this translates to variabil-
ity during movement. The effect of single motor-neuron 
spikes on muscle movement has been measured only in 
invertebrate systems, in which it was shown that variabil-
ity in spike timing (on the order of milliseconds) and in 
the number of spikes (±1) produces variability in muscle 
length of up to 10%30,113–115. These invertebrate muscles are  
comparable in scale to the human laryngeal muscles 
that control speech production, which have to operate 
with millisecond precision. However, little is known 
about the characteristics, activation and reliability of  
such muscles116.

Human motor behaviour — from eye movements117–119  
to hand trajectories117,120,121— can be explained by optimal 
control models that generate movements in a way that 
minimizes the impact of motor noise. It remains unclear 
how much of the observed trial-to-trial movement vari-
ability is due to motor-neuron and muscle noise and how 
much is due to other sources of variability in the (spinal) 
motor commands119,121.

Principles of how the CNS manages noise
In general, noise cannot be removed from a signal once 
it has been added. Furthermore, it is important to note 
that in some cases it is not always desirable to remove 
noise, as noise can have beneficial consequences for 
information processing (BOX 1). However, there are sev-
eral principles that can be used to minimize the negative 
consequences of noise. We now review two key princi-
ples — averaging and prior knowledge — that the CNS 
applies at multiple levels.

The principle of averaging can be applied whenever 
redundant information is present across the sensory 
inputs to the CNS or is generated by the CNS. Averaging 
can counter noise if several units (such as receptor mol-
ecules, neurons or muscles) carry the same signal and 
each unit is affected by independent sources of noise 
(BOX 2 figure, part a). Averaging is seen at the very first 
stage of sensory processing. For example, the stereocilia 
of auditory hair cells capture sound vibrations and open 
mechanically gated ion channels. These stereocilia  
are mechanically coupled and so they move together, 
averaging random fluctuations in the movement of indi-
vidual stereocilia122. Similarly, visual inputs are typically 
averaged over photoreceptors with adjacent or overlap-
ping receptive fields67. Moreover, hair cells and photore-
ceptors are graded-potential neurons that do not use 

APs but instead communicate their varying membrane 
potential through graded synapses. This makes noise 
removal through averaging a straightforward operation 
for their postsynaptic membranes123.

Counterintuitively, divergence (one neuron synapsing 
onto many) can also support averaging. When signals 
are sent over long distances through noisy axons, rather 
than using a single axon it can be beneficial to send the 
same signal redundantly over multiple axons and then 
combine these signals at the destination. Crucially, for 
such a mechanism to reduce noise the initial divergence 
of one signal into many must be highly reliable. Such 
divergence is seen in auditory inner hair cells, which pro-
vide a divergent input to 10–30 ganglion cells through a 
specialized ‘ribbon synapse’ (REF. 124).

Prior knowledge can also be used to counter noise. If 
the structure of the signal and/or noise is known it can 
be used to distinguish the signal from the noise. This 
principle is especially helpful in dealing with sensory 
signals that, in the natural world, are highly structured 
and redundant125–127. By using prior knowledge about the 
expected structure, sensory processing can compensate 
for noise. This is manifest in the notion that a neuron’s 
receptive field tells us what message the neuron is con-
veying128. Signal-detection theory shows that the optimal 
signal detector, subject to additive noise, is obtained by 
matching all parameters of the detector to those of the 
signal to be detected129: in neuroscience this is termed 
the matched-filter principle130. Thus, the structures of 
receptive fields embody prior knowledge about the 
expected inputs and thereby allow neurons to attenuate 
the impact of noise.

Simple averaging works best when each signal source 
is corrupted by a similar amount of noise. Therefore, 
principles of averaging and prior knowledge are often 
combined in the nervous system when the sources are 
affected by different amounts of noise. Prior knowledge 
about the amount of noise for a given source allows for 
weighted averaging. In general, the less noisy (more 
reliable) inputs should contribute more to the averag-
ing process than more noisy (less reliable) inputs. This 
has been demonstrated in several behavioural studies in 
which subjects were required to integrate inputs from 
different pairs of sensory sources131–138. The studies 
showed that the weight given to each source was pro-
portional to its reliability (the inverse of the variance 
of the source), demonstrating that the nervous system 
has prior knowledge about the variability of its senses. 
Moreover, the observed behavioural variability in 
estimation tasks involving multiple sensory sources 
could be predicted from the behavioural variability 
to the individual sources if the source variability was 
mathematically treated as independent noise131–135. This 
strongly suggests that most of the behavioural variabil-
ity in such sensory tasks arises from noise rather than 
from deterministic sources of variability. The motor 
system also applies a weighted averaging mechanism 
of this type to reduce the consequences of noise. For 
example, when redundant muscles can rotate a joint, the 
muscles are co-activated in a way that minimizes total 
movement variability139.
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Averaging is used in many neural systems in which 
information is encoded as patterns of activity across a 
population of neurons that all subserve a similar func-
tion (for example, see REFS 140,141): these are termed 
neural population codes. A distributed representation  
of information of this type is more robust to the effects of  
noise. Many sensory systems form a spatially-ordered 
population — that is, a map — in which neighbour-
ing neurons encode stimuli that share closely related 
features. Such spatially ordered populations support two 
basic goals of neural computation: first, a transformation 
between different maps (such as the direction of sounds 
into neck rotation) and, second, the combination of 
information from multiple sources (such as visual- and 
auditory-cue combination)142. The information capacity 
of a population of neurons is greatest when the noise 
sources across the population are not correlated. Noise 
correlations, which are often observed in populations of 
higher-order neurons, limit information capacity143,144 
and have led to the development of population-coding 
strategies that account for the effects of correlations145.

The principles of averaging and prior knowledge can 
be placed into a larger mathematical framework of opti-
mal statistical estimation and decision theory, known as 
Bayesian inference146. Bayesian inference assigns prob-
abilities to propositions about the world (beliefs). These 
beliefs are calculated by combining prior knowledge (for 
example, that an animal is a predator) and noisy obser-
vations (for example, the heading of animal) to infer the 
probability of propositions (for example, animal attacks). 
Psychophysical experiments have confirmed that 
humans use these Bayesian inferences to allow them to 
cope with noise (and, more generally, with uncertainty) 
in both perception and action147,148. However, the neural 
mechanisms that are involved in Bayesian computations 
are unknown. One idea is that neurons encode prob-
abilities or beliefs about the state of the world149,150 and 
this concept has been incorporated into Bayesian models 
of neuronal population codes142,151,152.

The above discussion has focused on the processing 
of information arriving simultaneously from multiple 
neurons or sensory modalities. However, information 
is often acquired over time, and in this case temporal 
averaging to be used to remove noise. For example, in 
signal-transduction systems, biochemical reaction time-
constants could be set to make the duration of the reac-
tions longer than the duration of the noise events — this 
would average-out random fluctuations153. Averaging 
over time can take place at the cellular level because of 
the temporal-integration properties of the membrane. 
These properties can be tuned by an appropriate choice 
of neuronal geometry154 and ion channels155 so that the 
characteristic bandwidth of the noise is strongly attenu-
ated whereas the signal is not. Electrophysiological 
studies in the monkey have shown that behaviourally 
relevant signals are averaged not only across neuronal 
populations but also over time in the formation of a 
behavioural decision156.

In behaviour, temporal averaging is important when 
we need to estimate the current state or configuration 
of our limbs. Both the motor commands acting on our 

body and the sensory feedback containing information 
about the configuration of our body are noisy. Knowing 
the motor command allows us to predict the expected 
body configuration using an internal forward (predic-
tive) model. However, such a prediction would deviate 
over time if sensory feedback were not available. The 
Kalman filter157 is an algorithm that combines noisy sen-
sory feedback and the prediction from forward models 
to estimate the current configuration of our body over 
time. Kalman filtering in the CNS was demonstrated in 
behavioural studies of hand position158 and posture159.

In many cases the CNS has to choose a strategy by 
which it will achieve a goal through interaction with 
the environment. For example, in reaching the motor 
system has to specify a sequence of muscle activations to 
achieve a goal. However, there are many possible strate-
gies to achieve a goal, and each might have a different 
associated cost (error, energy or time). Finding effi-
cient strategies involves optimizing a cost function. For 
example, it has been proposed that we choose to move 
in a way that reduces the detrimental consequences 
of noise117. Stochastic optimal-control theory160 has 
emerged as a framework by which to study sensorimotor 
control. This theory makes several predictions that have 
been experimentally verified. For example, rather than 
specify a desired hand trajectory and use feedback to 
keep you on that trajectory, this theory proposes that 
optimal feedback control on task-relevant parameters 
is used: by allowing variation in parameters that do not 
affect the task, the system can behave in a more optimal 
manner. Stochastic optimal-feedback control is a beau-
tiful example of how the principles of prior knowledge 
and averaging are put to use in motor behaviour. This 
framework has been able to explain quantitative data 
from human and primate movements160–163. However, 
the neuronal substrate and mechanisms of such optimal 
controllers remain unknown.

Humans also use strategies that appear to increase 
noise. Confronted with higher movement-accuracy 
constraints (for example, when asked to rapidly point 
at small targets), people co-contract their muscles164, 
which increases joint stiffness103,165. However, greater 
activation of the muscles results in higher neuromuscular 
noise levels and is expected to produce larger movement 
variability. The reason that this is not the case lies in the 
dynamic properties of the muscles. In fact, movement 
variability decreases overall because the positive stabi-
lizing effect of enhanced stiffness exceeds the negative 
effects of the increased force variability of the individual 
muscles103,165–167. Thus, human sensorimotor control takes 
account of noise to increase behavioural precision.

Conclusion
Noise has recently emerged as a key component of a wide 
range of biological systems — from gene expression96 to 
heart function87. In neuroscience, we have shown how 
noise is introduced at all stages of the sensorimotor 
loop, from the level of a single signalling protein to 
that of body movement. Noise has direct behavioural 
consequences, from setting perceptual thresholds to 
affecting movement precision. Although there has been 
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White Gaussian noise 
process
A random process that 
generates a series of events, 
each Gaussian distributed. The 
mean and varience of the 
Gaussian completely 
determines the statistics of the 
series, and there is no temporal 
correlation between events.

an awareness of sensory noise for over half a century, 
cellular and motor noise have only recently received 
significant attention.

The question of the extent to which noise generates 
variability in the CNS is likely to require both experi-
mental studies and stochastic modelling (in which 
each source of variability can be controlled for). We are 
beginning to develop a bottom-up understanding of how 
noise that is present at the molecular level (channel noise 
in membranes and biochemical noise at synapses) affects 
information processing at macroscopic levels (whole 
neurons, neuronal networks and behaviour). At all of 
these levels a key advance has been the use of stochastic 
models that can explain the experimentally observed var-
iability and enable mechanisms to be characterized in a 
more detailed and often simpler manner than determin-
istic models (for example, see REFS 45,61,103,117,148). It 
has often been convenient to approximate noise by some 
additive random processes, such as Poisson or Gaussian 
processes, in which higher-order statistics beyond the 
mean (and the variance), as well as temporal structure, 
are ignored. This simple approach often forms the best 
assumption when data is lacking, and it simplifies the 
mathematical manipulation. However, it can result in 
noise levels being underestimated by several orders 
of magnitude in many small structures of the CNS61. 
Owing to the discrete nature of molecular noise and the 
nonlinearities that are present, noise can have a complex 
temporal structure, such as abrupt and large changes 
in noise level61 and spatial interactions can produce 
unexpected effects63,92. Advances in stochastic (Monte 
Carlo) simulations have made it possible to investigate 
in silico the nature and effects of noise in well known but 
previously deterministically described mechanisms (for 
example, see REFS 61,63,92,117).

The amount of noise that can be tolerated for a 
task depends on the required internal (such as long-
term stability of memories) and behavioural (such as 
movement accuracy) performance. Noise levels set 
both hard limits on the CNS, such as the degree of 
miniaturization of the brain’s circuits61 and soft con-
straints, such as the metabolic cost or the amount of 
time that is required to complete a task. For example, 
APs are noisy but also metabolically costly (mean neu-
ronal firing rates in the cortex appear to be limited 
by energy supply168). Therefore, although neuronal 
communication becomes more reliable by using more 
APs, it also becomes more expensive. This trade-off 
has been observed in mammalian visual systems169,170. 
Another trade-off involves noise and time. For exam-
ple, in pointing tasks, movement speed and pointing 
accuracy are inversely related (Fitt’s law171), as faster 
movements require greater muscle forces, which are 
more noisy117. Therefore, noise is an integral part 
of the tradeoff between CNS resources (mass, size, 
time delays, et cetera) and performance which might  
ultimately determine evolutionary fitness.

Noise is an inescapable consequence of brains oper-
ating with molecular components at the nanometer 
scale, sensors that are sensitive to individual quanta 
and complex networks of noisy neurons that generate 
behaviour. The presence of noise in nervous systems 
has profound implications for their computational 
power172. Yet, despite significant noise levels our brain 
appears to function reliably, presumably because it has 
evolved under the constraints that are imposed by noise. 
Therefore, to understand the nervous system we have to 
distinguish variability from noise by accounting for its 
sources and appreciate the way in which it influences the 
brain’s structure and function.
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